Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Development of Electrostatic Capacity Type Steering Sensor Using Conductive Leather

2020-04-14
2020-01-1209
Today’s progress in electronic technologies is advancing the process of making vehicles more intelligent, and this is making driving safer and more comfortable. In recent years, numerous vehicles equipped with high-level Advance Driving Assist System (ADAS) have been put on the market. High-level ADAS can detect impending lane deviation, and control the vehicle so that the driver does not deviate from the lane. Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers.
Technical Paper

Research of Steering Grasping to Take over Driver from System

2018-04-03
2018-01-1068
Lane departure prevention systems are able to detect imminent departure from the road, allowing the driver to apply control to prevent lane departure. These systems possess enormous potential to reduce the number of accidents resulting from road departure, but their effectiveness is highly reliant on their level of acceptance by drivers. The effectiveness of the systems will depend on when they are providing driving assistance, what level of laxness in terms of maintaining contact with the steering wheel is allowed on the part of the driver, and what level of assistance the system provides. This paper will discuss research on the minimum necessary contact and contact strength with the steering wheel on the part of the driver when a lane departure prevention system is in operation.
Technical Paper

Effectiveness of High-Speed Motorized Seatbelt by Computer Simulation and Actual Vehicle Test

2016-04-05
2016-01-1503
Motorized seatbelt systems that retract seatbelts using motors are being mass-produced by many manufacturers. Scenarios for operation of these systems cover a wide range, including automatic braking for collision avoidance, brake assist and other such pre-crash situations, when the seatbelt is buckled, unbuckled and stored, during sport driving, or under normal conditions. These systems increase the retracting load of the motor using gears, and they can apply a high load in retracting the seatbelt. Previous systems, however, were designed primarily for pre-crash conditions. In previous systems, motor speed rose to higher levels in the normal operating state. The tendency to generate more noise and the application of higher loads on seatbelt retraction therefore became issues. For the present study, these issues were addressed using simulation to optimize the gear ratio.
Technical Paper

Research on Variable-Speed Brake Control in Multiple-Collision Automatic Braking

2015-04-14
2015-01-1410
According to the North American National Automotive Sampling System Crashworthiness Data System (NASS/CDS), approximately one-half of all accidents during driving are of the secondary collision pattern in which the collision event involves the occurrence of secondary collision. Accidents involving impact to a stopped vehicle (chain-reaction collisions) have increased to approximately 3% of all accidents in North America, and although the rate of serious injury is low, cases have been reported of accidents in which cervical sprain occurs as an after-effect[1]. In order to mitigate these circumstances, research has been conducted on systems of automatic braking for collisions. These systems apply brakes automatically when a first collision has been detected in order to avoid or lessen a second collision. Research on automatic collision braking systems, however, has not examined the multiple collisions parked [1, 2].
Technical Paper

Expansion of Motorized Seatbelt Control that Adjusts to Vehicle Behavior and the Effect of that Expansion

2014-04-01
2014-01-0507
Currently, a number of automobile OEMs have been equipped motorized seatbelt systems with volume-production vehicles. Since the current systems are generally initiated by the activation of the automatic collision brakes, or the brake assist systems; the benefit of those systems is limited solely in pre-crash phase. To enhance the effectiveness of the system, we attempted to develop a motorized seatbelt system which enables to control retracing force according to various situations during driving. The present system enables to accomplish both the occupants' comfort and protection performance throughout their driving from when it is buckled to when unbuckled and stored, or during both routine and sport driving, as well as pre-crash phase. Moreover, it was confirmed that lateral occupants' excursion during driving was reduced by up to 50% with the present system.
X