Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Design Guidelines of the Single-Point Auto-Ignition Engine based on Supermulti-Jets Colliding for High Thermal Efficiency and Low Noise: Obtained by Computational Experiments for a Small Strongly-Asymmetric Double-Piston Engine

2014-11-11
2014-32-0100
An inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% for small engines was proposed in our previous reports, which is achieved with colliding supermulti-jets that create air insulation to encase burned gas around the chamber center, avoiding contact with the chamber walls and piston surfaces. The colliding of pulse jets can maintain high pressure ratio for various air-fuel ratios, whereas traditional homogeneous compression engines due to piston cannot get high pressure ratio at stoichiometric condition. Emphasis is also placed on the fact that higher compression in this engine results in less combustion noise because of encasing effect. Here, a small prototype engine having supermulti-jets colliding with pulse and strongly-asymmetric double-piston system is examined by using computational experiments. Pulse can be generated by the double piston system of a short stroke of about 40mm.
Technical Paper

Two Small Prototype Engines Developed based on Pulsed Supermulti-Jets Colliding: Having a Potential of Thermal Efficiency Over 60% with Satisfactory Strength of Structure

2014-11-11
2014-32-0099
In our previous reports based on computations and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive and relatively quiet engine reactor that has the potential to achieve thermal efficiency over 50% even for small combustion chambers having less than 100 cc. This can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center. We originally developed two small prototype engine systems for gasoline. First one with one rotary valve for pulsating intake flow and sixteen nozzles of jets colliding has no pistons. Next, we developed the second one having a strongly-asymmetric double piston system with the supermulti-jets colliding, although there are no poppet valves. The second prototype engine can vary point-compression strength due to the supermulti-jets and homogeneous compression level due to piston, by changing phase and size of two gears.
Technical Paper

Development Of Fugine Based on Supermulti-Jets Colliding with Pulse: Leading to Stable Plug-Less Start and Improvement of HCCI with Satisfactory Strength of Structure

2014-10-13
2014-01-2639
In our previous reports based on computational experiments and fluid dynamic theory, we proposed a new compressive combustion principle for an inexpensive, lightweight, and relatively quiet engine reactor that has the potential to achieve incredible thermal efficiency over 60% even for small combustion chambers having less than 100 cc. This level of efficiency can be achieved with colliding supermulti-jets that create complete air insulation to encase burned gas around the chamber center, thereby avoiding contact with the chamber walls, including the piston. We originally developed an actual prototype engine system for gasoline. The engine has a strongly-asymmetric double piston and the supermulti-jets colliding with pulse, although there are no poppet valves. The number of jets pulsed for intake and exhaust is eight, while both of bore and stroke are about 40mm.
X