Criteria

Text:
Display:

Results

Viewing 1 to 5 of 5
2017-07-10
Technical Paper
2017-28-1922
S Nataraja Moorthy, Manchi Rao, Prasath Raghavendran, Sakthi Babu
Abstract NVH is becoming one of the major factor for customer selection of vehicle along with parameters like fuel economy and drivability. One of the major NVH challenges is to have a vehicle with aggressive drivability and at the same time with acceptable noise and vibration levels. This paper focuses on the compact utility vehicle where the howling noise is occurring at higher rpm of the engine. The vehicle is powered by three cylinder turbocharged diesel engine. The noise levels were higher above 2500 rpm due to the presence of structural resonance. Operational deflection shapes (ODS) and Transfer path analysis (TPA) analysis was done on entire vehicle and powertrain to find out the major reason for howling noise at higher engine rpm. It is observed that the major contribution for noise at higher rpm is due to modal coupling between powertrain, half shaft and vehicle sub frame.
2017-01-10
Technical Paper
2017-26-0219
S Nataraja Moorthy, Manchi Rao, Prasath Raghavendran
Abstract Globally the customers are demanding more powerful yet silent vehicles to enhance their daily commuting and goods transportation needs. The current trend in the design is to enhance the engine power without major change in the physical configurations of the engine systems. Increasing the power and torque of the powertrain will have an undesirable and adverse effect on NVH levels. In this research work, a light weight rear wheel drive vehicle was investigated from torsional vibration perspective. The vehicle is powered by a two cylinder engine with turbo charger. The power and torque of the vehicle was increased approximately two times with the help of turbocharger which resulted in increasing the powertrain torsional vibration. This increased vibration was further amplified through inevitable driveline resonances which causes severe vibration at the passenger seat location and steering. Also, the noise levels are above the comfortable zone.
2015-06-15
Technical Paper
2015-01-2190
Manchi Venkateswara Rao, S Nataraja Moorthy, Prasath Raghavendran
Abstract Mount development and optimization plays an important role in the NVH refinement of vehicle as they significantly influence overall driving experience. Dynamic stiffness is a key parameter that directly affects the mount performance. Conventional dynamic stiffness evaluation techniques are cumbersome and time consuming. The dynamic stiffness of mount depends on the magnitude of load, frequency of application and the working displacement. The above parameters would be far different in the test conditions under which the mounts are normally tested when compared to operating conditions. Hence there is need to find the dynamic stiffness of mounts in actual vehicle operating conditions. In this paper, the dynamic stiffness of elastomeric mounts is estimated by using a modified matrix inversion technique popularly termed as operational path analysis with exogenous inputs (OPAX).
2015-06-15
Technical Paper
2015-01-2293
Manchi Venkateswara Rao, S Nataraja Moorthy, Prasath Raghavendran
Abstract Tactile vibration during vehicle key on/off is one of the critical factors contributing to the customer perceived quality of the vehicle. Minimization of the powertrain transient vibration in operating conditions such as key on/off, tip in/out and engagement/disengagement of engine in hybrid vehicles must be addressed carefully in the vehicle refinement stage. Source of start/stop vibration depends on many factors like engine cranking, engine rpm at which the combustion process starts and rate of engine rpm rise etc. The transfer path consists of elastomeric mounts of powertrain and the part of vehicle structure from mounts to tactile response location. In this paper, the contribution of rigid body motion of powertrain of a front wheel drive vehicle during key on/off is analyzed in both frequency and time domain. The signal is analyzed in frequency domain by using fast fourier transform, short time fourier transform and wavelet analysis.
2014-04-01
Technical Paper
2014-01-0015
Mohit Kohli, S Nataraja Moorthy, Manchi Venkateswara Rao, Prasath Raghavendran
Abstract The present quiet and comfortable automobiles are the result of years of research carried out by NVH engineers across the world. Extensive studies helped engineers to attenuate the noise generated by major sources such as engine, transmission, driveline and road excitations to a considerable extent, which made other noise sources such as intake, exhaust and tire perceivable inside. Many active and passive methods are available to reduce the effect of said noise sources, but enough care needs to be taken at the design level itself to eliminate the effect of cavity resonances. Experimental investigation of cavity resonances of real systems is necessary besides the FEA model based calculations. Acoustic cavity resonance of vehicle sub systems show their presence in the interior noise through structure borne and air borne excitations. Cavity resonances for some systems e.g. intake can only be suppressed through resonators.
Viewing 1 to 5 of 5