Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Uncertainties in Emissions Measurements in a Partial Flow Sampling System

2015-01-14
2015-26-0096
This paper investigates experimental uncertainties associated with gaseous and particulate emissions measurements in a partial flow emissions sampling system developed and built at the Larson Transportation Institute of the Pennsylvania State University. A small fraction of the tail pipe exhaust is diluted with dilution air and passed through a cyclone to eliminate particles bigger than 2.5 microns. The diluted exhaust is then passed through a 47 mm Teflon filter for gravimetric measurement of Particulate Matter (PM). Mass flow controllers operating at 5Hz are used to control the flow rates of dilution air, diluted exhaust, and proportional flow of diluted exhaust into a Tedlar bag. An ultrasonic flow meter is used to measure flow rate of tail pipe exhaust. At the end of a test, the concentration of gaseous emissions in the bag, namely CO2, CO, HC, and NOx are measured using a bag emissions analyzer.
Technical Paper

Uncertainties in Measurements of Emissions in Chassis Dynamometer Tests

2014-04-01
2014-01-1584
This paper illustrates a method to determine the experimental uncertainties in the measurement of tailpipe emissions of carbon dioxide, carbon monoxide, nitrogen oxides, hydrocarbons, and particulates of medium-, and heavy-duty vehicles when tested on a heavy-duty chassis dynamometer and full-scale dilution tunnel. Tests are performed for different chassis dynamometer driving cycles intended to simulate a wide range of operating conditions. Vehicle exhaust is diluted in the dilution tunnel by mixing with conditioned air. Samples are drawn through probes for raw exhaust, diluted exhaust and particulates and measured using laboratory grade emission analyzers and a microbalance. At the end of a driving cycle, results are reported for the above emissions in grams/mile for raw continuous, dilute continuous, dilute bag, and particulate measurements.
X