Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Advancements in CHAMPS for Multi-Layer Ice Accretion on Aircraft

2023-06-15
2023-01-1474
The numerical simulation of ice accretion on aircraft is a complex problem that is difficult to simulate robustly, especially in 3D. The process, which combines multiple different solvers, is prone to fail whenever the geometry deformation due to ice is too complex. Thus, the more ice layers, the more fragile is the simulation. This paper aims at studying, and possibly reducing, the dependency on the number of layers by considering i) the impact of the deforming surface on the impingement and ii) a local roughness modeling that can better position the ice horns. The method called Impact Angle Correction (IAC) method in the literature is implemented and consists in setting in an additional loop the components solved on the surface, namely the thermodynamic exchanges and the geometry update, to consider the change in the surface normal vectors.
Technical Paper

3D Immersed Boundary Methods for the Calculations of Droplet Trajectories towards Icing Application

2023-06-15
2023-01-1458
The in-flight ice accretion simulations are typically performed using a quasi-steady formulation through a multi-step approach. As the ice grows, the geometry changes, and an adaptation of the fluid volume mesh used by the airflow and droplet-trajectory solver is required. Re-meshing or mesh deformation are generally employed to do that. The geometries formed are often complex ice shapes increasing the difficulty of the re-meshing process, especially in three-dimensional simulations. Consequently, difficulties are encountered when trying to automate the process. Contrary to the usual body-fitted mesh approach, the use of immersed boundary methods (IBMs) allows solving, or greatly reducing, this problem by removing the mesh update, facilitating the global automation of the simulation. In the following paper, an approach to perform the airflow and droplet trajectory calculations for three-dimensional simulations is presented. This framework utilizes only immersed boundary methods.
Technical Paper

A Penalization Method for 2D Ice Accretion Simulations

2019-06-10
2019-01-1939
Numerical tools for 3D in-flight icing simulations are not straightforward to automate when seeking robustness and quality of the results. Difficulties arise from the geometry and mesh updates which need to be treated with care to avoid folding of the geometry, negative volumes or poor mesh quality. This paper aims at solving the mesh update issue by avoiding the re-meshing of the iced geometry. An immersed boundary method (here, penalization) is applied to a 2D ice accretion suite for multi-step icing simulations. The suggested approach starts from a standard body-fitted mesh, thus keeping the same solution for the first icing layer. Then, instead of updating the mesh, a penalization method is applied including: the detection of the immersed boundary, the penalization of the volume solvers to impose the boundary condition and the extraction of the surface data from the field solution.
Technical Paper

Multi-time Step Icing Calculations Using a 3D Multi-block Structured Mesh Generation Procedure

2015-06-15
2015-01-2161
The paper presents the framework of fully automated two/three dimensional ice accretion simulation package, with emphasis on the remeshing step. The NSMB3D-ICE Navier-Stokes code, coupled to an Eulerian droplet module and iterative Messinger thermodynamic model, can perform multi time-steps ice accretion simulations via an automated multi-block elliptic/parabolic grid generation code (NSGRID3D). Attention is paid to the efficiency and robustness of the numerical calculations especially for complex 3D glaze ice simulation. The new automated multi time-step icing code NSMB3D-ICE/NSGRID3D is used to compute several icing studies on the GLC305 wing for rime and glaze ice cases.
X