Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development of a Parametric Model for Burn Rate Estimation in Direct Injection Diesel Engine

2019-01-09
2019-26-0035
In internal combustion engines, rate of fuel burning known as burn rate is a simplified representation of complex in-cylinder combustion process. It is considered as a prime input especially in 1D simulation tool for all important thermodynamic studies. A novel parametric model for prediction of burn rate in heavy duty Direct Injection (DI) diesel engine has been introduced in the present work. A wide range of experimental data with more focus on higher load points with different in-cylinder combustion characteristics is considered and burn rates have been generated using measured pressure trace. Generated burn rates have been studied over different phases of combustion. These burn rate shapes have been analyzed to understand the effect of fuel injection system, air management subsystem parameters along with in-cylinder conditions on combustion. Different mathematical modelling approaches for burn rate approximation like Wiebe function have been studied.
Journal Article

Diffusive Air Jet Combustion Chamber and Its Effect on DI Diesel Engine Combustion and Exhaust Emissions

2015-01-14
2015-26-0105
An innovative Diffusive Air Jet (DAJ) Combustion Chamber concept has been introduced in the present work. The DAJ Combustion Chamber design is based on the study of rate of heat release (ROHR) curve and its correlation with emission generation. The objective is to lower the trade-off between NOx and soot without sacrificing fuel economy of Direct Injection (DI) diesel engine. DAJ Combustion Chamber modifies ROHR curve to the desired one so that it lowers engine out emissions. To study its effect, a large bore, six cylinder engine with mechanical fuel injection system has been used. Three dimensional simulation software is used for the model calibration of basic reentrant cavity. Local emissions and ROHR curve have been studied using reentrant cavity shape. It has been modified to DAJ Combustion Chamber using Air Jet Chambers (AJCs). AJCs are positioned in the three dimensional model in such a way that they affect local in-cylinder emissions.
Technical Paper

Effect of Combustion System Parameters on DI Diesel Engine Performance and Exhaust Emissions

2013-11-27
2013-01-2745
In Direct Injection (DI) diesel engines, combustion gets affected by change in in-cylinder air motion and Fuel injection system characteristics. Computational Fluid Dynamics (CFD) based models give detailed insight into the combustion phenomena. The present work investigates the effect of different combustion chamber geometries and fuel injection system parameters on engine emissions and performance aiming to improve trade-off between NOx and smoke. AVL FIRE CFD software is used in this work. Research engine having 9 liter capacity of heavy duty application has been selected for the study. Seven hole injector is used with mechanical fuel injection system having 1000 bar maximum pressure capability. Inputs required to model complex combustion process in the AVL FIRE are derived from one dimensional engine simulation software AVL BOOST.
X