Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Self-Adjusting Cutting Parameter Technique for Drilling Multi-Stacked Material

2015-09-15
2015-01-2502
This study investigates the self-adjusted cutting parameter technique to improve the drilling of multi-stacked material. The technique consists in changing the cutting strategy automatically, according to the material being machined. The success of this technique relies on an accurate signal analysis, whatever the process setting. Motor current or thrust force are mostly used as incoming signals. Today, analyses are based on the thresholding method. This consists in assigning lower and upper limits for each type of material. The material is then identified when the signal level is stabilized in between one of the thresholds. Good results are observed as long as signal steps are significantly distinct. This is the case when drilling TA6V-CFRP stacks. However, thrust force level remains roughly unchanged for AA7175-CFRP stacks, leading to overlapping thresholds. These boundary limits may also change with tool geometry, wear condition, cutting parameters, etc.
Journal Article

New Vibration System for Advanced Drilling Composite-Metallic Stacks

2013-09-17
2013-01-2078
To reduce the weight of aero structures, composite materials are combined with metallic parts. These multilayer materials are one-shot drilled during the assembly process. During drilling, interactions appear between the different layers creating new quality issues. To improve machining efficiency, the portable semi-automated drilling units commonly used for such operations need to be upgraded. For this purpose, vibration systems have been recently introduced into drilling units. This article first considers the effect of the reciprocating axial movement on the quality of the machined surface, then focuses on the effect of the oscillation parameters (frequency, magnitude) on the cutting process (cutting forces, thermal load, etc.). Experimental and numerical results are used to find the method that produces the optimal vibration setting. This method is then applied to the case of drilling composite-metallic stack.
X