Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Technical Paper

Measurement of Hydrogen Jet Equivalence Ratio using Laser Induced Breakdown Spectroscopy

2024-04-09
2024-01-2623
Hydrogen exhibits the notable attribute of lacking carbon dioxide emissions when used in internal combustion engines. Nevertheless, hydrogen has a very low energy density per unit volume, along with large emissions of nitrogen oxides and the potential for backfire. Thus, stratified charge combustion (SCC) is used to reduce nitrogen oxides and increase engine efficiency. Although SCC has the capacity to expand the lean limit, the stability of combustion is influenced by the mixture formation time (MFT), which determines the equivalence ratio. Therefore, quantifying the equivalence ratio under different MFT is critical since it determines combustion characteristics. This study investigates the viability of using a Laser Induced Breakdown Spectroscopy (LIBS) for measuring the jet equivalence ratio. Furthermore, study was conducted to analyze the effect of MFT and the double injection parameter, namely the dwell time and split ratio, on the equivalence ratio.
Technical Paper

Experimental and Numerical Analysis of an Outward Opening Injector Pintle Dynamics

2023-10-24
2023-01-1810
Direct injection strategies have been successfully used on spark ignited internal combustion engines for improving performance and reducing emissions. Among the different technologies available, outward opening injectors seem to have found their place in renewable applications running on gaseous fuels, including natural gas or hydrogen, as well as in a few specific liquid fuel applications. In order to understand the key operating principles of these devices, their limitations and the resulting sprays, it is necessary to accurately describe the pintle dynamics. The pintle’s relative position with respect to the injector body defines the internal flow geometry and therefore the injection rates and spray characteristics. In this paper both numerical and experimental investigations of the dynamics of an outward opening injector pintle have been carried out.
Journal Article

Gasoline Direct Injector Deposits: Impacts of Fouling Mechanism on Composition and Performance

2022-03-29
2022-01-0488
Injector performance in gasoline Direct-Injection Spark-Ignition (DISI) engines is a key focus in the automotive industry as the vehicle parc transitions from Port Fuel Injected (PFI) to DISI engine technology. DISI injector deposits, which may impact the fuel delivery process in the engine, sometimes accumulate over longer time periods and greater vehicle mileages than traditional combustion chamber deposits (CCD). These higher mileages and longer timeframes make the evaluation of these deposits in a laboratory setting more challenging due to the extended test durations necessary to achieve representative in-use levels of fouling. The need to generate injector tip deposits for research purposes begs the questions, can an artificial fouling agent to speed deposit accumulation be used, and does this result in deposits similar to those formed naturally by market fuels?
Journal Article

A New Pathway for Prediction of Gasoline Sprays using Machine-Learning Algorithms

2022-03-29
2022-01-0492
The fuel spray process is of utmost importance to internal combustion engine design as it dominates engine performance and emissions characteristics. While designers rely on computational fluid dynamics (CFD) modeling for understanding of the air-fuel mixing process, there are recognized shortcomings in current CFD spray predictions, particularly under super-critical or flash-boiling conditions. In contrast, time-resolved optical spray experiments have now produced datasets for the three-dimensional liquid distribution for a wide range of operating conditions and fuels. By utilizing such a large amount of detailed experimental data, the machine learning (ML) techniques have opened new pathways for the prediction of fuel sprays under various engine-like conditions.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Near Nozzle Flow and Atomization Characteristics of Biodiesel Fuels

2017-10-08
2017-01-2327
Fuel atomization and air-fuel mixing processes play a dominant role on engine performance and emission characteristics in a direct injection compression ignition engine. Understanding of microscopic spray characteristics is essential to predict combustion phenomena. The present work investigated near nozzle flow and atomization characteristics of biodiesel fuels in a constant volume chamber. Waste cooking oil, Jatropha, and Karanja biodiesels were applied and the results were compared with those of conventional diesel fuel. The tested fuels were injected by a solenoid injector with a common-rail injection system. A high-speed camera with a long distance microscopic lens was utilized to capture the near nozzle flow. Meanwhile, Sauter mean diameter (SMD) was measured by a phase Doppler particle analyzer to compare atomization characteristics.
Technical Paper

An Experimental Investigation on Spray Characteristics of Waste Cooking Oil, Jatropha, and Karanja Biodiesels in a Constant Volume Combustion Chamber

2016-10-17
2016-01-2263
In this study, macroscopic spray characteristics of Waste cooking oil (WCO), Jatropha oil, Karanja oil based biodiesels and baseline diesel were compared under simulated engine operating condition in a constant volume spray chamber (CVSC). The high pressure and high temperature ambient conditions of a typical diesel engine were simulated in the CVSC by performing pre-ignition before the fuel injection. The spray imaging was conducted under absence of oxygen in order to prevent the fuels from igniting. The ambient pressure and temperature for non-evaporating condition were 3 MPa and 300 K. Meanwhile, the spray tests were performed under the ambient pressure and temperature of 4.17 MPa and 804 K under evaporating condition. The fuels were injected by a common-rail injection system with injection pressure of 80 MPa. High speed Mie-scattering technique was employed to visualize the evaporating sprays.
Journal Article

Comprehensive Assessment of Soot Particles from Waste Cooking Oil Biodiesel and Diesel in a Compression Ignition Engine

2015-04-14
2015-01-0809
The effect of biodiesel produced from waste cooking oil (WCO) on the soot particles in a compression ignition engine was investigated and compared with conventional diesel fuel. The indicated mean effective pressure of approximately 0.65 MPa was tested under an engine speed of 1200 revolutions per minute. The fuels were injected at an injection timing of −5 crank angle degree after top dead center with injection pressures of 80 MPa. Detailed characteristics of particulate matters were analyzed in terms of transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and elemental analysis. Soot aggregates were collected on TEM grid by thermophoretic sampling device installed in the exhaust pipe of the engine. High-resolution TEM images revealed that the WCO biodiesel soot was composed of smaller primary particle than diesel soot. The mean primary particle diameter was measured as 19.9 nm for WCO biodiesel and 23.7 nm for diesel, respectively.
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

2013-10-14
2013-01-2662
An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
X