Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Assessing the Importance of Injector Cleanliness in Minimising Particulate Emissions in Gasoline Direct Injection Engines

2022-03-29
2022-01-0490
Injector fouling is an important contributory factor to particulate matter (PM) emissions in Gasoline Direct Injection (GDI) engines. Several publications have emerged in recent years which acknowledge the benefits of injector cleanliness, but others claim that high levels of Deposit Control Additive (DCA) could have detrimental effects that outweigh the benefits of the augmented cleaning potential. The paper is divided into two parts: The first part contains a critical review of the literature linking injector cleanliness and particulate matter emissions, and studies assessing the impact of higher treat rates of additives. The second part of the paper describes new evidence of the beneficial effects of DCAs, in the form of several separate (previously unpublished) studies, using both engines and vehicles. In this newly reported work, various DCA treat rates were employed, and some of the fuels had measured UWG levels well in excess of 50 mg/100 mL.
Journal Article

Demonstration of Fuel Economy Benefit of Friction Modifier Additives via Fuel-to-Lubricant Transfer in Euro-5 Gasoline Fleet

2013-10-14
2013-01-2611
Improved fuel economy is a key measure of performance in the automotive industry, driven both by market demand and increasingly stringent government emissions regulations. In this climate, targeting even small benefits to fuel consumption (FC) can have a large impact when considering fleet average CO2 emissions. Lubricant properties over the course of an oil drain interval (ODI) directly influence long-term fuel consumption. Furthermore, viscosity control gasoline additives have been shown to provide FC benefit via fuel-to-lubricant transfer. This study investigated whether consistently fueling with gasoline containing friction modifier (FM) additives could provide a long-term fuel consumption benefit via a lubricant transfer mechanism. A robust fleet trial method was employed to quantify fuel consumption benefits of two friction modifier additive packages relative to a baseline deposit control additive (DCA) package in a 95 RON, E5 fuel.
X