Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

Process Parameter for Biodiesel Production - Jatropha Curcas

2013-11-27
2013-01-2890
The stepping up of biodiesel production in India depends upon the strategy to grow extract, transesterify and refine as the fuel. The bulk of the biodiesel today produced is from non edible oil seeds (Jatropha L. curcas) and the process of extracting oil from non edible oil seeds have to be improved and made more efficient. This paper deals with the idea of providing optimum process parameters for the process of expelling and transesterification for the production of biodiesel. Process parameters for expelling deals with the optimization of Moisture content of seeds, oil content of seeds, Hull fraction of seeds, preheating temperature of seeds and screw speed. Process parameters for the transesterification process deals with the molar ratio of oil and alcohol, reaction temperature, stirring speed, water quantity for washing, drying temperature and time.
Technical Paper

Experimental Investigations on Lean Burn Spark Ignition Engine Using Methanol - Gasoline Blends

2019-01-09
2019-26-0088
The present study discusses the effects of engine combustion, performance and emission features of methanol-gasoline blend fired lean burn Spark Ignition (SI) engine. Performance features such as Brake Power (BP), Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTE), tail pipe emissions namely Hydrocarbon (HC), Carbon Monoxide (CO), Nitrogen Oxide (NO), Carbon di Oxide (CO2) and combustion characteristics viz. in-cylinder pressure, Heat Release Rate (HRR), Cumulative Heat Release (CHR) and variation of mean effective pressure were measured and compared with that of neat gasoline. Experiments were conducted on a modified sole cylinder four-stroke compression engine (Kirloskar TAF1) to operate as SI engine with a compression ratio of 10.5:1. A new manifold injection system and ignition system were developed by replacing the fuel injection pump and injector.
Technical Paper

Modeling and Simulation of Steady State Handling Characteristics of Formula Vehicle with Antiroll Bars

2019-01-09
2019-26-0068
Antiroll bar plays an important role in rollover stability of the vehicle. But not only does it limit the vehicle roll during cornering, but also alters the lateral load transfer between the tracks, which in turn affects the cornering performance of the vehicle. This paper deals with the design and mathematical modeling of antiroll bars to reduce the body roll of the vehicle from 1.5°/g to less than 1.0°/g. Rear bar uses a conventional torsion type bar but the front anti roll mechanism is an unconventional antiroll bar using a rotating double cantilever mechanism. Mathematical modeling is done for pushrod rod actuated antiroll mechanisms to simulate its non-linear roll rates. Antiroll bars for front and rear are designed for the calculated stiffness. Finite Element Analysis of antiroll bar and its components is done and the mechanism is tested on the vehicle. Steady state tire model parameters are generated by curve fitting tire testing data into pacejka coefficients.
Technical Paper

Electro-Pneumatic Shifting System and Gear Control Unit for a Sequential Gearbox

2016-02-01
2016-28-0175
This paper describes the design methodology and algorithm development towards the design of an automatic external gear-shifting and clutch-actuation system for a sequential gearbox with the aim of providing the drivers with easier and an efficient means of shifting gears. Automatically actuated manual transmission system bridges the gap between automatic and manual transmissions which provides the advantages of both type of transmissions. This would ideally leads to faster shifting time and provide significant benefits in the form of electronic-aids like launch control and traction control. Removal of mechanical clutching would reduce fatigue and lead to ergonomic benefit. Based on the benchmarking performed on an easily available ready-to-install aftermarket alternative, options will be considered for the actuating mechanism and the most feasible will be used to develop a shifting system.
Technical Paper

CFD Modeling of Advanced Swirl Technique at Inlet-Runner for Diesel Engine

2015-01-14
2015-26-0095
This paper summarizes the research work incorporated in the exploration of the potential of swirling in CI Engine and designing of a new mechanism, particularly at inlet, to deliver it to improve the in-cylinder air characteristics to eventually improve mixing and combustion process to improve the engine performance. The research is concentrated on the measures to be done on engine geometry so as to not only deliver advantage to any specific fuel. According to the CI combustion theory, better engine performance may be achieved with Higher Viscous Fuel by improving the in-cylinder air-fuel mixing by increasing the swirl (rotation of air view from top of the cylinder) and tumble (rotation of air view from front of the cylinder) of in-cylinder air inside the fuel-injected region. The proposed inlet component is embedded with airfoil and is suitably designed after being iterated from four steps.
Technical Paper

Parametric Optimization for Biodiesel Production from Jatropha Curcus

2015-01-14
2015-26-0047
Biodiesel is an alternate fuel for diesel consisting of the alkyl monoester of fatty acids derived from vegetable oils. The most usual method to transform oil into biodiesel is transesterification which can be carried out using different catalyst. Jatropha is second generation oil which is non edible and can be use for producing biodiesel. The first part is to expel oil from jatropha seeds. There are different types of expelling methods such as mechanical extraction, solvent extraction and enzymatic extraction. The study was conducted with hand driven mechanical expeller which is most conventional way of extracting oil from seeds with mechanical efficiency of 60-80% for single pass. The study includes various combinations of parameters like seed treatment, sun drying, pre-heating, soaking at different temperatures and different de-hulling compositions.
Technical Paper

Design and Optimization of Crash-Box of Passenger Vehicle to Enhance Energy Absorption

2019-03-25
2019-01-1435
Frontal crash is the most common type of accidents in passenger vehicles which results in severe injuries or fatalities. During frontal crash, some frontal vehicle body has plastic deformation and absorbs impact energy. Hence vehicle crashworthiness is important consideration for safety aspect. The crash box is one of the most important parts in vehicle frontal structure assembly which absorb crash energy during impact. In case of frontal crash accident, crash box is expected to be collapsed by absorbing crash energy prior to the other parts so that the damage to the main cabin frame and occupant injury can be minimized. The main objective of this work is to design and optimize the crash box of passenger vehicle to enhance energy absorption. The modeling of the crash box is done in CATIA V5 and simulations are carried out by using ANSYS. The results show significant improvement in the energy absorption with new design of the crash box and it is validated experimentally on UTM.
Technical Paper

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

2019-11-21
2019-28-2394
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Aerodynamic Analysis of Electric Passenger Car Using Wind Turbine Concept at Front End

2019-11-21
2019-28-2396
Electric passenger car with floor battery usually have its front boot space empty and the space is used as additional luggage storage. This space can be utilized to capture the wind energy and generate electricity. Based on this, the objective of this work is to perform an aerodynamic analysis of an electric passenger car using wind turbine placed at the front. Initially the aerodynamic analysis of a basic electric car model is performed and further simulated using wind turbines and aerodynamic add-on-devices. The simulation is carried-out using ANSYS Fluent tool. Based on the simulation result, scaled down optimized model is fabricated and tested in wind tunnel for validation. The result shows reduction of drag coefficient by 5.9%.
Technical Paper

Spring and Damper Tuning of an ATV to Reduce Transmissibility

2019-11-21
2019-28-2401
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability.
Technical Paper

Aerodynamic Analysis of a Passenger Car to Reduce Drag Using Active Grill Shutter and Active Air Dam

2019-11-21
2019-28-2408
Active aerodynamics can be defined as the concept of reducing drag by making real-time changes to certain devices such that it modifies the airflow around a vehicle. Using such devices also have the added advantages of improving ergonomics and performance along with aesthetics. A significant reduction in fuel consumption can also be seen when using such devices. The objective of this work is to reduce drag acting on a passenger car using the concept of active aerodynamics with grill shutters and air dams. First, analysis has been carried out on a baseline passenger car and further simulated using active grill shutters and air dams for vehicle speed ranging from 60 kmph to 120 kmph, with each active device open from 0° to 90°. The optimized model is then validated for a scaled down prototype in a wind tunnel at 80kmph. Vehicle has been modelled using SolidWorks tool and the simulation has been carried out using ANSYS Fluent.
Technical Paper

Quality Biodiesel Production and Engine Performance & Emission Evaluation Using Blends of Castor Biodiesel

2021-03-08
2021-28-0001
Automotive engine emissions are disturbing the ecological system and it has caused major impact on flora & fauna and environment. The major motive force behind this research is to find the alter-native fuel for the future sustainable mobility and less dependence on the fossil fuels. Biodiesel fuel produced from non-edible oil (like castor) could be used to replace a considerable portion of the conventional fuel consumed worldwide. Castor oil is selected for this study considering a fact that India is a major contributor in global castor oil seed production and also it, being a non-edible oil, avoids the cold-war between food vs fuel. The present study has been conducted in three phases.
Technical Paper

Optimisation of Parameters for the Production of Biodiesel from Jatropha Oil

2016-02-01
2016-28-0144
Biodiesel is an alternative fuel for diesel which is made through a chemical process which converts vegetable oils and fats of natural origin into fatty acid methyl esters (FAME). The most usual method to transform Bio-oil into biodiesel is Transesterification that can be carried out using different catalyst systems. Jatropha is second generation, non-edible oil and can be used for producing biodiesel. The Transesterification reaction consists of heating jatropha oil with proper concentration of methanol at appropriate temperature in the presence of catalyst. After reaction, the mixture is allowed to settle down for 8-10 hrs. Two separate layers, top layer of biodiesel and lower layer of glycerol will form, which can be separated. Reaction temperature, amount of methanol, catalyst and reaction time are important parameters which decide yield and quality of biodiesel.
Technical Paper

Active Hybrid Energy Storage System for Electric Two Wheeler

2020-09-25
2020-28-0516
Use of Supercapacitor with Li-ion Battery as an Energy Storage System (ESS) for a two wheeler can be implemented in a variety of configurations with the aim to improve the cycle life of Li-ion batteries by decreasing the current transients they are subjected to, and to increase the peak power capability of the Power pack. MATLAB/SIMULINK tool is used as simulation software to model the Road Profile, Vehicle, Electric Powertrain and the Hybrid ESS (HESS). In this paper, the effect of different topologies of HESS and effect of degree of hybridization is analyzed w.r.t. current profile, voltage profile and State of Charge (SOC). Results show that use of HESS for Electric two wheeler in place of battery decreases the Peak/RMS Current experienced by the battery with corresponding improvement in battery life.
Technical Paper

Concept Design and Analysis of Mini E-Tractor

2020-09-25
2020-28-0517
This paper deals with the concept design of a mini tractor which is suitable for mild ploughing operations with 5 kW electric motor. The low cost battery driven mini tractor operates on a lead acid batteries. The design principles and calculations of electric tractor powertrain are studied and delineated in details. By using these calculations, parameters of the major powertrain components like drive motor, battery and transmission are obtained. The powertrain model of an electric tractor is modelled with MATLAB/Simulink to estimate the traction and battery performance. The CAD model of tractor is prepared in Solidworks and CAE analysis of chassis is performed using ANSYS Workbench to ensure safety and reliability. Calculations are performed for tractor subsystems such as steering system and braking system. The analysis results confer the design as safe and satisfactory in terms of performance.
Technical Paper

Biodiesel from Microalgae

2017-01-10
2017-26-0077
Microalgae as feedstock are the potential third generation biofuels. Microalgae are photosynthetic microorganism which requires light, carbon-di-oxide, nitrogen, phosphorous, and potassium for growth and to produce lipids, proteins and carbohydrates in large amounts over short a periods of time. The production of biofuels from microalgal is a viable alternative due to their easy adaptability to growth conditions, possibility of growing biomass either in fresh or marine waters. Hence the current project was designed to elucidate the biodiesel producing ability of blue-green algae such as Spirulina platensis and Green algae Chlorella vulgaris. The selected algae were cultivated in suitable growth media such as modified Zarrouke medium and bold basal medium, respectively. The Spirulina platensis and Chlorella vulgaris were mass cultured for 8 days then harvested using 50 micron nylon filters and dried in sunlight to obtain dry biomass.
Technical Paper

Assessment on Performance, Combustion and Emission Characteristics of Diesel Engine Fuelled with Blends of Diesel, Algae Biodiesel and Heptanol

2019-01-09
2019-26-0091
Because of higher NOx and PM emissions Compression Ignition (CI) engines are slowly being replaced by gas engines in metro cities though CI engine have better thermal efficiency and emit less Carbon monoxide (CO) and Unburned Hydrocarbons (UHC) emission than SI engines. Pollutants formed during combustion, depleting fossil fuels and continuous raising fuel price pushes the research community to find new alternative fuels which can be used along with diesel or replace the diesel without making major modifications in the current engine. The objective of this research work is to derive bio-diesel fuel from the source of algae and use it as a fuel by blending with commercially available diesel fuel. Heptanol is added along with algae bio-diesel and diesel blend to improve the ignition quality of the blend. Tests were conducted on a single cylinder constant speed, water cooled stationary diesel engine with different blends proportions of heptanol-biodiesel-diesel.
Technical Paper

Aerodynamic Analysis of Race Car Using Active Wing Concept

2019-11-21
2019-28-2395
In high speed race cars, aerodynamics is an important aspect for determining performance and stability of vehicle. It is mainly influenced by front and rear wings. Active aerodynamics consist of any type of movable wing element that change their position based on operating conditions of the vehicle to have better performance and handling. In this work, front and rear wings are designed for race car prototype of race car. The high down force aerofoil profiles have been used for design of front and rear wing. The first aerodynamic analysis has been performed on baseline model without wings using CFD tool. For investigation, parameters considered are angle of attack in the range of 0-18° for front as well as rear wing at different test speeds of 60, 80, 100 and 120 kmph. The simulation is carried out by using ANSYS Fluent. The simulation results show significant improvement in vehicle performance and handling parameters.
X