Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

A Comprehensive Study on DOC Selection for Euro 6 Compliant Heavy Commercial Vehicles

2021-09-22
2021-26-0216
Euro 6 emission norms are getting implemented in India from April 2020 and it is being viewed as one of the greatest challenges ever faced by the Indian automotive industry. In order to achieve such stringent emission norms along with top performance for vehicle, a good strategy should be incorporated to control system out NOx emissions and soot regeneration. Extruded Vanadium catalyst is deployed for this passive regeneration system with DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR (Selective Catalyst Reduction), where the amount of catalyst loading in DOC plays an apex role in deciding conversion efficiency of SCR and passive regeneration capabilities. This study mainly focuses on the impact of catalyst loading of DOC over SCR efficiency. NO2 to NOx ratio should be close to 0.5 for optimum conversion efficiency of SCR. Catalyst loading in DOC decides the amount of NO2 coming upstream to SCR.
Technical Paper

Behaviour Study of Particulate Matter and Chemical Composition with Different Combustion Strategies

2013-11-27
2013-01-2741
Diesel exhaust is a complex mixture of combustion products of diesel fuel, and the exact composition of the mixture depends on the nature of the engine, operating conditions, lubricating oil, additives, emission control system, combustion parameters and fuel composition. In a diesel engine, NOx (NO & NO2) and PM (Particulate Matter) are the most critical constituents for the emission legislation. In order to control the PM emission of diesel engine and comply with increasingly stringent exhaust legislation, more information is required on the components and genesis of PM. In general, PM from diesel engines is classified into two fractions: Insoluble Organic Fraction (ISOF) and Soluble Organic Fraction (SOF). In this experimental study, a series of 13 mode ESC cycle were run on a light duty diesel engine after optimization of combustion parameters (Injection Pressure, Injection Timing, Multiple Injections, EGR rate, etc) in successive tests and PM component was analyzed.
Technical Paper

Concept Based Evaluation and Development of Close-Coupled DOC through Model in Loop Simulation Supported by Experimental Investigations on 3L Light & Medium Duty BS - VI Diesel Engine

2022-03-29
2022-01-0561
The implementation of stringent BSVI norms from April 2020 has greatly revolutionized the automobile industry. With the plan for implementation of more stringent BSVI OBD-II norms from April 2023, in place, meeting legislative limits, particularly with CI engines, will be a challenge. The major challenge is the reduction in nitrogen oxides (NOx) which necessitates a selective catalytic reduction (SCR), together with effective calibration, to maintain the conversion efficiencies at the highest possible levels. The conversion efficiency is majorly dictated by temperature and exhaust mass flow. Hence, optimization of thermal management modes are very important. This is achieved by a close-coupled diesel oxidation catalyst (DOC).
Technical Paper

Experimental Study of EGR Mixture Design and its Influence on EGR Distribution Across the Cylinder for NOx - PM Tradeoff

2013-11-27
2013-01-2743
Future emissions regulations like BSIV and above in India, Diesel engine manufacturers are forced to find complex ways to reduce exhaust gas pollutant emissions, in particular NOx and particulate matter (PM). Exhaust gas recirculation (EGR) into the engine intake is an established technology to reduce NOx emissions. The distribution of EGR in each cylinder plays vital role in combustion process and hence it will affect exhaust emissions. The influence of EGR mixture design and its effect on distribution across the cylinder has significant impact on the NOx-PM trade-off which is studied on light duty direct injection diesel engine. A simulation and experimental study of EGR mixer design is conducted to explain this effect and the distribution of EGR across the cylinder at different EGR flow rate.
Technical Paper

Experimental and Simulation Study to Optimize the Venturi Throat Diameter for Effective Use of EGR Rate to Achieve BSIV

2013-11-27
2013-01-2739
Exhaust gas recirculation (EGR) is one of the most effective methods for reducing the emissions of nitrogen oxides (NOx) of diesel engines. EGR system has already been used to mass-produce diesel engines, in which EGR is used at the low and medium load of engine operating condition, resulting in NOx reduction. In order to meet future emission standards, EGR must be done over wider range of engine operation, and heavier EGR rate will be needed. It is especially important for EGR to be done in a high engine load range since the amount of NOx is larger than the other engine operation conditions. EGR systems adapted to the diesel engines of trucks usually recirculate exhaust gas utilizing the pressure difference between upstream part of the turbocharger turbine and downstream part of the compressor. The venturi throat diameter plays the vital role for the flow of EGR across the exhaust and intake.
Technical Paper

Impact of Swirl on NOx and Soot Emission by Optimizing Helical Inlet Port of 4 Valve Direct Injection Diesel Engine

2015-01-14
2015-26-0091
Air motion in a cylinder in a compression ignition engine affects on mixing of air-fuel, quality of combustion and emission produced. With upcoming stringent norms for diesel engines, it is necessary to enhance air-fuel mixing for proper combustion. Swirl and tumble are forms of air motion. Swirl is a rotational motion of a bulk mass within cylinder. Swirl is generated by shaping and countering intake manifold and valve ports. Swirl enhances air-fuel mixing and helps to spread flame-front during combustion. The objective of this paper is to analyze the impact of different swirl ratios on NOx and soot emission characteristics inside the cylinder of a DI Diesel engine. The effects of different geometrical parameters of helical port were studied and the swirl ratios are optimized by optimizing the geometrical parameter of helical port. This can be done by different manufacturing, polishing and grinding processes.
Technical Paper

Optimization of Smoke Limitation to Achieve BSIV Emission Norms Maintaining Vehicle Performance and Fuel Economy on LCV CRDe EGR Diesel Engine

2016-02-01
2016-28-0098
Nowadays technology is changing day by day and so as the expectation of the customers. Customers relate their vehicle and their reputation. Smoke coming out of vehicle affects badly on the reputation of the customer that is why today’s customer wants smoke free vehicle during transient condition. Low Air Fuel Ratio leads to smoke due to rich combustion mixture. Smoke could be generated due to turbo leg, sudden acceleration, gear changing, cold condition, altitude etc. During sudden acceleration, turbo leg leads to rich mixture which is favourable condition for smoke generation. It is difficult to reduce turbo leg in waste gate type turbocharger while maintaining EGR requirement in EGR based Engine. Smoke can be optimized by controlling fuelling in sudden acceleration or in transient condition. However it might adversely affect on vehicle pick up and could improve fuel economy.
Technical Paper

Turbocharger Selection in HD BSIV EGR Engine with the Help of Analytical Method and Correlation with Actual Testing

2017-10-16
2017-01-7007
Turbocharging has become an important method for increasing the power output of diesel engines. A perfectly matched turbocharger can increase the engine efficiency and decrease the BSFC. For turbocharger matching, engine manufacturers are dependent on the turbocharger manufacturers. In this paper, an analytical model is presented which could help engine manufacturers to analyze the performance of turbocharger for different load and ambient condition using compressor and turbine map provided by turbo manufacturers. The analytical model calculates the required pressure at inlet and exhaust manifold for fixed vane turbocharger with waste gate using inputs like BSFC, lambda, volumetric efficiency, turbocharger efficiency and heat loss, that are available with the engine manufacturer.
X