Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Flame Area Correlations with Heat Release at Early Flame Development of Combustion Process in a Spark-Ignition Direct-Injection Engine Using Gasoline, Ethanol and Butanol

2013-10-14
2013-01-2637
As the vehicle emission regulations become stricter worldwide, one way to meet the emission requirements is to engage the use of alternative fuels in engine combustion. In this investigation, the early combustion processes of regular gasoline and alternative fuels, including ethanol and butanol, were studied by simultaneously recording both the in-cylinder pressure and the crank angle-resolved high-speed flame images in a single-cylinder spark-ignition direct-injection engine. The engine was equipped with a quartz insert in the piston which provided an optical access to its cylinder through the piston. The effects of engine coolant & oil temperatures and intake air swirl ratio on the early flame development were also studied. The heat release was derived from the in-cylinder pressure measurements and the corresponding flame area characteristics were extracted from the images.
Technical Paper

Development of a POD-Based Analysis Approach for Quantitative Comparison of Spray Structure Variations in a Spark-Ignition Direct-Injection Engine

2013-10-14
2013-01-2545
Strong cycle-to-cycle variations of fuel spray are observed due to the highly transient in-cylinder airflow in spark-ignition direct-injection (SIDI) engine. The spray structure comparison based on ensemble-averaged image may be misleading sometimes because the spray images for the same engine running condition could be different from cycle to cycle. Also, the visual comparison of spray images from many cycles is only qualitative and very time-consuming. Therefore, the present paper provides a novel approach to make quantitative comparison of spray structures from different engine conditions, or comparison between experiment and simulation (such as large eddy simulation, LES). The methodology is based on the proper orthogonal decomposition (POD), which has been utilized for in-cylinder turbulent flow research for over a decade.
X