Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Landing Gear Integration in an Industrial Multi-Disciplinary Optimization Environment

2013-09-17
2013-01-2319
A landing gear design automation tool has been developed and integrated in the conceptual multi-disciplinary optimization (MDO) environment at Bombardier Aerospace (BA). The tool allows an optimization to consider the landing gear integration at each design iteration. It uses design rules followed at BA to determine positions and ground contact points for the nose and main landing gears, while performing all necessary checks such as tip over, tail strike, and wing-tip strike angles. Subject to maximum loads from a set of predefined cases, the landing gear structure is sized and the tires and rims are selected from an embedded database. Once the landing gear is defined, a full kinematic analysis is performed to optimize the pivot axis and stowage of the gear in the fuselage. The tool was validated with actual data from several aircraft showing minimal errors in landing gear positioning and sizing (± 3%).
Technical Paper

A Methodology for Systems Integration in Aircraft Conceptual Design - Estimation of Required Space

2013-09-17
2013-01-2235
This paper presents a methodology for conceptual aircraft design to evaluate the space available for systems (top-down approach) and to estimate the space required for critical components impacting the aircraft configuration (bottom-up approach). The presented top-down approach introduces the concept of “equivalent design volume”, including the space required for systems and the associated empty space to access, maintain and ventilate them. This approach enables an early feasibility check for aircraft configuration exploration regarding the integration and installation of systems, without having to detail the system architecture. In complement, the bottom-up approach introduces the estimation of the required dimensions for critical components. Here, the example of the flight control actuators integration in the wing tip is presented.
X