Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Developing EPB Analytic Model Based on Multi-Flexible Body Dynamics

2023-11-05
2023-01-1885
The current braking system of a vehicle includes a parking braking system, which consists of a Motor on Caliper (MOC) that generates hydraulic main braking and electric parking braking through a caliper structure. When designing the MOC braking system, it is important to consider an analytical model that can predict the performance of the parking clamping force and the torque generated between the disk and caliper interactions. However, in previous designs, system predictions were often based on simplified structural calculations or incomplete Finite Element Method (FEM) analysis. In this paper, a study was conducted to predict the system performance using Multi-flexible Body Dynamics (MFBD) analysis. Firstly, a kinematic model (MBD) was developed for the Electric Parking Brake (EPB) system currently used in mass-produced vehicles. And the MBD model which based on kinematics was the initial model for this study.
Technical Paper

Optimal Design of EPB Caliper Using DOE

2017-09-17
2017-01-2519
An Electrical Parking Brake (EPB) system is a device that operates to park the vehicle automatically with the push of a button instead of using conventional hand or foot levers which in some ways makes it the first by wire type of brake system. As such, it is being considered in some vehicle architectures as an automatic redundant backup for vacuum-less brake systems or autonomous cars. The EPB system is generally divided into cable puller and motor on caliper (MOC) types. Recently, the MOC type EPB is being more widely applied in the global market due to product competitiveness and cost effectiveness. The MOC type EPB is composed of the caliper body, torque member, pad assembly, nut assembly and actuator. Among them, the caliper body and torque member play a main role in the robustness of the EPB system and occupy more than 80% of the total weight.
Technical Paper

A Study on Design for Noise Reduction of hEMB

2015-09-27
2015-01-2702
EMB (Electro-Mechanical Brake) which converts electrical motor power to brake clamping force at each wheel is a system that has been investigated and developed by various automotive part suppliers through the years. In particular, as the number of electrically powered vehicles, such as hybrid electric vehicles, electric vehicles and fuel cell electric vehicles, has expanded, the EMB has received increased interest due to its fast response that is much suited for effective cooperative control with regenerative braking. However, issues such as cost competitiveness, reliability and regulations need to be solved for commercialization [1-2]. A new concept, the hybrid Electro-Mechanical Brake (hEMB) is characterized by a dual piston structure linked by hydraulics inside of the caliper. It is possible to reduce the required motor power and increase the level of emergency back-up braking through the amplification effect of the dual piston mechanism [3].
Journal Article

Electro-Mechanical Brake for Front Wheel with Back-up Braking

2014-09-28
2014-01-2538
Electro-Mechanical Brake (EMB) is the brake system that is actuated by electrical energy and has a similar design with the Electric Parking Brake (EPB). It uses motor power and gears to provide the necessary torque and a screw & nut mechanism is used to convert the rotational movement into a translational one. The main difference of EMB compared with EPB is that the functional requirements of components are much higher to provide the necessary performance for service braking such as response time. Such highly responsive and independent brake actuators at each wheel lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking.
Journal Article

Multi-Objective Optimization and Robust Design of Brake By Wire System Components

2013-09-30
2013-01-2059
A Brake By Wire (BBW) system is generally composed of electro-mechanical calipers at each wheel, a pedal simulator and a central controller. The brake demand is processed by the pedal and the central controller commands the brake distribution for each brake actuator. The highly responsive and independent brake actuators lead to enhanced controllability which should result in not only better basic braking performance, but also improvements in various active braking functions such as integrated chassis control, driver assistance systems, or cooperative regenerative braking. Although the BBW system has the potential for numerous advantages and innovations in braking, it has yet to be successfully introduced in series production mainly due to safety and cost concerns. Recent studies have been made to investigate the functional safety aspects and additional mechanical backup measures in this regard.
X