Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

On The Integration of Actively Controlled Longitudinal/Lateral Dynamics Chassis Systems

2014-04-01
2014-01-0864
Integral Control strategy for vehicle chassis systems had been of great interest for vehicle designers in the last decade. This paper represents the interaction of longitudinal control and lateral control. In other words the traction control system and handling control system. Definitely, tire properties are playing a vital role in such interaction as it is responsible for the generated forces in both directions. A seven degrees of freedom half vehicle model is derived and used to investigate this interaction. The vehicle body is represented as a rigid body with three degrees of freedom, lateral and longitudinal, and yaw motions. The other four degrees are the two rotation motion of the front wheel and the rear wheel. This two motions for each wheel are spin motion and the steering motion. The traction controller is designed to modulate engine torque through adjusting the throttle angle of the engine upon utilized adhesion condition at the driving road wheels.
Technical Paper

Testing, Modelling and Analysis of a Linear Magnetorheological Fluid Damper under Sinusoidal Conditions

2013-04-08
2013-01-0996
Magnetorheological (MR) fluid dampers are the most promising devices for practical vibration control applications because they have many advantages such as mechanical simplicity, high dynamic range, low power requirements, large force capacity and robustness. This paper aims to study the dynamical behavior of a linear MR fluid damper through experiments. Also, an efficient and simple model is developed to identify the damping force as a function of the damper velocity, acceleration and applied voltage to the magnetic coil, without using any complicated mathematical or differential equations, which will be very useful for large and complicated applications. The identified parameters of the MR damper are obtained using trial-and-error methodology. The validation is done using the dynamical behaviour of MR damper for both experimentation and simulation, by solving the modified Bouc-Wen (M B-W) model that can predict the dynamical behavior of MR dampers accurately.
X