Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Magnetic Form of Heavy Rare-Earth Free Motor for Hybrid Electric Vehicle

2017-03-28
2017-01-1221
As heavy rare earth elements are become less prevalent, because one-tenth as often in ore deposits as light rare earth elements. Future usage of need to be reduces heavy rare earth, because of resource risks and costs. As such, a method was developed to recover reductions in coercive force and prevent demagnetization temperature from reducing without adding any heavy rare earth elements. First, a heavy rare-earth-free magnet was developed by hot deformation, which limits growth of crystal grain size, and relationships were clarified between coercive force and optimal deforming temperatures, speed, and total rare earth amounts for heavy rare-earth-free magnets. Second, it was made clear that the permeance coefficient can be increased by reshaping the flux barriers, and that the developed hot deformed magnet can be adopted.
Journal Article

Development of Transverse Flux Motor with Improved Material and Manufacturing Method

2013-04-08
2013-01-1765
Honda has been proposing and developing a Transverse Flux Motor (T.F. motor) in order to shorten axial length of the motor for hybrid electric vehicles (HEVs). In contrast to conventional motors that are composed of a stator core (made from magnetic steel sheet) and winding wires, the T.F. motor is a new type of three-dimensional magnetic circuit motor composed of a soft magnetic composites (SMC) core and a coil. While reducing axial length and achieving a simple stator architecture comprised of just five parts, the new motor raises issues including the need to improve motor efficiency and the development of techniques for the manufacture of rectangular wave-shaped coils. To improve motor efficiency, we conducted a parameter study of the SMC core material and manufacturing conditions to establish the optimum required specifications for reducing iron loss.
X