Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 16 of 16
Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Hydrogen Internal Combustion Engine Strategies for Heavy-Duty Transportation: Engine and System Level Perspective

2024-01-16
2024-26-0175
Hydrogen internal combustion engines (H2ICE) offer a cost-effective solution to decarbonize transport by combining a lower carbon intensity fuel with mature and established internal combustion engine technology. While vehicles running with hydrogen have been demonstrated over the years, this fuel's physical and chemical properties require modifications and upgrades on the vehicle from an engine and system-level perspective. In addition, market-specific regulatory and economic factors can also constrain the realization of optimal hydrogen powertrain architectures. Therefore, this paper reviews the impact of hydrogen use on combustion, injection, air management, and after-treatment systems, indicating the different strategies used to enable effective H2ICE strategies from an efficiency, cost, and safety standpoint.
Technical Paper

Combining DMDF and Hybrid Powertrains: A Look on the Effects of Different Battery Modelling Approaches

2022-03-29
2022-01-0658
Fleet electrification has been demonstrated as a feasible solution to decarbonize the heavy-duty transportation sector. The combination of hybridization and advanced combustion concepts may provide further advantages by also introducing reductions on criteria pollutants such as nitrogen oxides and soot. In this scenario, the interplay among the different energy paths must be understood and quantified to extract the full potential of the powertrain. One of the key devices in such powertrains is the battery, which involves different aspects regarding operation, safety, and degradation. Despite this complexity, most of the models still rely on resistance-capacity models to describe the battery operation. These models may lead to unpractical results since the current flow is governed by limiters rather than physical laws. Additionally, phenomena related with battery degradation, which decreases the nominal capacity and enhances the heat generation are also not considered in this approach.
Journal Article

Identifying Key Aspects of Thermal Runaway Modelling for Lithium-ion Battery Cells

2022-03-29
2022-01-0718
Electrification and hybridization of powerplants in the transportation sector is one of the most important changes in the last few decades. Lithium-ion batteries are the main energy storage systems, but despite the maturity of this technology, it has certain constrains compared to traditional internal combustion engines in the day-to-day usage. As the operating conditions of the batteries are pushed to the limits to overcome certain disadvantages relative to other conventional systems like charge and discharge times or vehicle driving range, new concerns and safety limitations must be considered. High power rates and cooling deficiencies can produce excessive operating temperatures within the cells, leading to problems with degradation or even unchain chemical reactions that can end in thermal runaway, one of the most worrying failure modes attaining electric platforms nowadays.
Technical Paper

Modeling of Reactivity Controlled Compression Ignition Combustion Using a Stochastic Reactor Model Coupled with Detailed Chemistry

2021-09-05
2021-24-0014
Advanced combustion concepts such as reactivity controlled compression ignition (RCCI) have been proven to be capable of fundamentally improve the conventional Diesel combustion by mitigating or avoiding the soot-NOx trade-off, while delivering comparable or better thermal efficiency. To further facilitate the development of the RCCI technology, a robust and possibly computationally efficient simulation framework is needed. While many successful studies have been published using 3D-CFD coupled with detailed combustion chemistry solvers, the maturity level of the 0D/1D based software solution offerings is relatively limited. The close interaction between physical and chemical processes challenges the development of predictive numerical tools, particularly when spatial information is not available.
Technical Paper

Surrogate Fuel Formulation to Improve the Dual-Mode Dual-Fuel Combustion Operation at Different Operating Conditions

2020-09-15
2020-01-2073
Dual-mode dual-fuel combustion is a promising combustion concept to achieve the required emissions and CO2 reductions imposed by the next standards. Nonetheless, the fuel formulation requirements are stricter than for the single-fuel combustion concepts as the combustion concept relies on the reactivity of two different fuels. This work investigates the effect of the low reactivity fuel sensitivity (S=RON-MON) and the octane number at different operating conditions representative of the different combustion regimes found during the dual-mode dual-fuel operation. For this purpose, experimental tests were performed using a PRF 95 with three different sensitivities (S0, S5 and S10) at operating conditions of 25% load/950 rpm, 50%/1800 rpm and 100%/2200 rpm. Moreover, air sweeps varying ±10% around a reference air mass were performed at 25%/1800 rpm and 50%/1800 rpm. Conventional diesel fuel was used as high reactivity fuel in all the cases.
Technical Paper

Evaluating the Efficiency of a Conventional Diesel Oxidation Catalyst for Dual-Fuel RCCI Diesel-Gasoline Combustion

2018-09-10
2018-01-1729
Reactivity controlled compression ignition (RCCI) combustion has demonstrated to be able to avoid the NOx-soot trade-off appearing during conventional diesel combustion (CDC), with similar or better thermal efficiency than CDC under a wide variety of engine platforms. However, a major challenge of this concept comes from the high hydrocarbon (HC) and carbon monoxide (CO) emission levels, which are orders of magnitude higher than CDC and similar to those of port fuel injected (PFI) gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures during RCCI operation present a challenge for current exhaust aftertreatment technologies. RCCI has been successfully implemented on different compression ignition engine platforms with only minor modifications on the combustion system to include a PFI for feeding the engine with the low reactivity fuel.
Technical Paper

Experimental evaluation of the emissions in an Otto cycle engine operating with hydrous and wet ethanol under different compression ratios

2018-09-03
2018-36-0277
The ethanol fuel sold in Brazil, which is seen as an option that represents less polluting gases emitted into the atmosphere, goes through a period where its economic viability does not compensate its use against the alternative coming from nonrenewable sources. It is known that part of the cost associated with commercial ethanol is due to its purification through distillation, which decreases the water percentage in the final composition. Aiming to evaluate alternatives to reduce the final cost of the fuel, a comparison was made between the burning results of hydrous ethanol, with up to 5% of water by volume, and the wet ethanol, with 30% water by volume, in an Otto cycle engine, operating with a fixed speed of 1800 RPM and seeking the maximum brake torque in each test.
Technical Paper

Investigation of Compression Ratio Effect on Wet Ethanol Use in Spark Ignition Engines

2017-11-07
2017-36-0208
Hydrous ethanol is pointed out as one of the major alternative fuel for internal combustion engines, because it is environmental friendly (almost zero CO2 emission) and has excellent combustion properties. Recent studies have shown that ethanol-water fuel blends with higher water content (so-called wet ethanol) can reduce the overall costs of ethanol production. The use of wet ethanol results in lower nitrogen oxides emissions at the cost of reduced lower heating value per mass of fuel blend, which may result in less thermal efficiency. On the other hand, the increase in water content improves knock resistance. Thus, this study aims to investigate the effects of mechanical compression ratio variation on a spark ignition engine using ethanol-water fuel blends containing 4, 10, 20 and 30% v/v of water in ethanol. The research was carried out in a SI single cylinder engine, port fuel injected, 0.668 dm3 with the compression ratio modified by spacer rings.
Technical Paper

HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine

2017-03-28
2017-01-0733
Ethanol with high levels of hydration is a low cost fuel that offers the potential to replace fossil fuels and contribute to lower carbon dioxide (CO2) emissions. However, it presents several ignition challenges depending on the hydration level and ambient temperature. Advanced combustion concepts such as homogeneous charge compression ignition (HCCI) have shown to be very tolerant to the water content in the fuel due to their non-flame propagating nature. Moreover, HCCI tends to increase engine efficiency while reducing oxides of nitrogen (NOx) emissions. In this sense, the present research demonstrates the operation of a 3-cylinder power generator engine in which two cylinders operate on conventional diesel combustion (CDC) and provide recycled exhaust gas (EGR) for the last cylinder running on wet ethanol HCCI combustion. At low engine loads the cylinders operating on CDC provide high oxygen content EGR for the dedicated HCCI cylinder.
Technical Paper

Analysis of Engine Performance and Combustion Characteristics of Diesel and Biodiesel blends in a Compression Ignition Engine

2016-10-25
2016-36-0391
Renewable fuels have received more attention in the last few decades since the fuel demand is constantly increasing. In this scenario, fuels from vegetable oils are emerging as an interesting alternative. In this study, biodiesel produced from used cooking oil was studied. Several concentrations of biofuel were tested to evaluate their performance and combustion characteristics i.e. 7% (B07), 17% (B17), 27% (B27), 52% (B52), 77% (B77) and 100% by volume of Biodiesel (B100) on conventional diesel. Tests were conducted in a single cylinder four-stroke compression ignition engine. A 1-D computational model was built and compared to experimental results. The biodiesel concentration in the blends had influence on engine performance by increasing fuel consumption due to its reduced lower heating value. In addition, larger fractions of biodiesel on conventional diesel presented higher peak of heat release.
Journal Article

Low Cost Wet Ethanol for Spark-Ignited Engines: Further Investigations

2015-04-14
2015-01-0954
This study evaluates the performance of an ethanol fueled spark ignited engine running with high levels of hydration. Ethanol is a renewable fuel and has been considered a promising alternative to counteract global warming and to reduce pollutant emissions. Its use is well established in ICE as the main fuel or blended with gasoline. However, due to its lower calorific value, it shows increased fuel consumption when compared to gasoline, rendering its use sometimes less attractive. The energy demand to produce ethanol, especially at the distillation phase, increases exponentially as the concentration of ethanol-in-water goes from 80% onwards. Thus, mixtures with less than 80% of ethanol-in-water would reduce the energy consumption during production, yielding a less expensive fuel. In previous studies, to evaluate the feasibility of wet ethanol as a fuel for spark-ignited engines, results have shown that it was possible to use mixtures of up to 40% of water-in-ethanol.
Technical Paper

Cylinder Pressure Based Engine Calibration of a Formula SAE Racing Engine

2014-09-30
2014-36-0350
Formula SAE racing engines must provide high output with maximum fuel efficiency despite the air restriction imposed by the rules. Throttle response and engine load control are very important due to the track characteristics with a few straights zones and many curves. In-cylinder pressure cyclic variations harm vehicle control and increase fuel consumption, due to the torque fluctuations. In order to reduce fuel consumption and improve vehicle drivability, engine calibration having the in-cylinder as a feedback parameter is an essential procedure and will be the focus of this paper. Test bench data with combustion analysis will be performed, using the COVIMEP as a combustion stability index. Tests were carried out on a motorcycle engine modified to run under the Formula SAE competition rules.
Technical Paper

Performance Analysis of a Spark Ignited Engine Running on Different Water-in-Ethanol Mixtures

2013-10-07
2013-36-0202
The current quest for clean and renewable fuels has prompted the appearance of several bio-mass fuel alternatives. Ethanol is a renewable biofuel obtained from different agricultural crops. The main production process to obtain anhydrous ethanol consists of crop production, mashing and cooking, fermentation, distillation and chemical dehydration. Some attractive characteristics of ethanol as a clean energy source is the CO2 absorption through photosynthesis during the crop plantation phase and positive ethanol life cycle energy balance. Even though, ethanol production cost is still relatively high when compared to fossil fuels. Knowing that a large energy amount is spent in the distillation phase, the use of hydrous ethanol as fuel, with high water content, can be economically attractive. This paper compares the use of high water-in-ethanol volumetric content fuel, varying from 5% to 40%, in a naturally aspirated 0.668-L single-cylinder port-fuel injected spark-ignited engine.
X