Viewing 1 to 3 of 3
Journal Article
G Agawane, Varun Jadon, Venkatesham Balide, R Banerjee
Abstract Liquid sloshing noise from an automotive fuel tank is becoming increasingly important during frequent accelerating/decelerating driving conditions. It is becoming more apparent due to significant decrease in other noise sources in a vehicle, particularly in hybrid vehicles. As a step toward understanding the dynamics of liquid sloshing and noise generation mechanism, an experimental study was performed in a partially filled rectangular tank. A systematic study was performed to understand the effects of critical parameters like fill level and acceleration/deceleration magnitude. Response parameters like dynamic pressure, dynamic force, dynamic acceleration and sound pressure levels along with high speed video images were recorded. The proposed experimental setup was able to demonstrate major events leading to sloshing noise generation. These events in the sloshing mechanism have been analysed from the dynamic sensor data and correlated with high speed video images.
Technical Paper
Rakesh Kale, R. Banerjee
Abstract Use of bio fuels in a regular spark ignition engine is becoming common in several countries to reduce the dependence on fossil fuels and overall generation of green house emissions. Alcohols such as methanol and ethanol are blended with gasoline when SI engines are considered. Advanced direct injection stratified charge engine technology has gained lot of interest due to its merits over conventional port fuel injection engine. Since the technology is significantly spray controlled, fuel injection and spray behavior under different thermodynamic conditions plays a very important role in successful engine operation. Present work was carried out to understand the spray behavior of isooctane and three alcohols under engine-like pressure and temperature conditions. Selected alcohols were ethanol, isobutanol and n-butanol. A six holes solenoid injector was used for this study.
Technical Paper
V. Jadon, G. Agawane, A. Baghel, Venkatesham Balide, R. Banerjee, A. Getta, H. Viswanathan, A. Awasthi
Abstract With significant decrease in the background noise in present day automobiles, liquid slosh noise from an automotive fuel tank is considered as a major irritant during acceleration and deceleration. All major international OEMs and their suppliers try to reduce sloshing noise by various design modifications in the fuel tank. However, most major activities reported in open literature are primarily based on performing various CAE and experimental studies in isolation. However, noise generation and its propagation is a multiphysics phenomenon, where fluid mechanics due to liquid sloshing affects structural behaviour of the fuel tank and its mountings which in turn affects noise generation and propagation. In the present study a multiphysics approach to noise generation has been used to predict liquid sloshing noise from a rectangular tank.
Viewing 1 to 3 of 3