Refine Your Search

Search Results

Author:
Viewing 1 to 12 of 12
Technical Paper

The Potential of Hydrogen High Pressure Direct Injection Toward Future Emissions Compliance: Optimizing Engine-Out NOx and Thermal Efficiency

2024-06-12
2024-37-0005
By building on mature internal combustion engine (ICE) hardware combined with dedicated hydrogen (H2) technology, the H2-ICE has excellent potential to accelerate CO2 reduction. H2-ICE concepts can therefore contribute to realizing the climate targets in an acceptable timeframe. In the landscape of H2-ICE combustion concepts, High Pressure Direct Injection (HPDI™) is an attractive option considering its high thermal efficiency, wide load range and its applicability to on-road as well as off-road heavy-duty equipment. Still, H2-HPDI is characterized by diffusion combustion, giving rise to significant NOx emissions. In this paper, the potential of H2-HPDI toward compliance with future emissions legislation is explored on a 1.8L single-cylinder research engine. With tests on multiple load-speed points, Exhaust Gas Recirculation (EGR) was shown to be an effective measure for reducing engine-out NOx, although at the cost of a few efficiency points.
Technical Paper

H2-ICE Technology Options of the Present and the Near Future

2022-03-29
2022-01-0472
At present, the hydrogen combustion engine has gained renewed interest from the heavy-duty internal combustion engine (ICE) industry as an enabler for fast decarbonization of well-to-wheel emissions and reinforced by the vast commitment of key stakeholders to establish a green hydrogen infrastructure. Past studies have often focused on partial substitution of the primary hydrocarbon fuel by hydrogen in spark ignition and compression ignition engines. Studied 100% hydrogen combustion engines are dominantly of the premixed spark ignition type using port fuel hydrogen injection. In this study, a wider look at other hydrogen ICE concepts has been taken that may bear high potential to overcome some of the limitations of using hydrogen for high power applications. The studied concepts vary from port injection to direct injection of hydrogen and from spark ignition to compression ignition.
Technical Paper

CO2 Neutral Heavy-Duty Engine Concept with RCCI Combustion Using Seaweed-based Fuels

2020-04-14
2020-01-0808
This paper focusses on the application of bioalcohols (ethanol and butanol) derived from seaweed in Heavy-Duty (HD) Compression Ignition (CI) combustion engines. Seaweed-based fuels do not claim land and are not in competition with the food chain. Currently, the application of high octane bioalcohols is limited to Spark Ignition (SI) engines. The Reactivity Controlled Compression Ignition (RCCI) combustion concept allows the use of these low carbon fuels in CI engines which have higher efficiencies associated with them than SI engines. This contributes to the reduction of tailpipe CO2 emissions as required by (future) legislation and reducing fuel consumption, i.e. Total-Cost-of-Ownership (TCO). Furthermore, it opens the HD transport market for these low carbon bioalcohol fuels from a novel sustainable biomass source. In this paper, both the production of seaweed-based fuels and the application of these fuels in CI engines is discussed.
Technical Paper

Validation of Control-Oriented Heavy Duty Diesel Engine Models for Non-Standard Ambient Conditions

2019-04-02
2019-01-0196
Complying to both the increasingly stringent pollutant emissions as well as (future) GHG emission legislation - with increased focus on in-use real-world emissions - puts a great challenge to the engine/aftertreatment control development process. Control system complexity, calibration and validation effort has increased dramatically over the past decade. A trend that is likely to continue considering the next steps in emission and GHG emission legislation. Control-oriented engine models are valuable tools for efficient development of engine monitoring and control systems. Furthermore, these (predictive) engine models are more and more used as part of control algorithms to ensure legislation compliant and optimized performance over the system lifetime. For these engine models, it is essential that simulation and prediction of system variables during non-nominal engine operation, such as non-standard ambient conditions, is well captured.
Technical Paper

Towards Ultra-Low NOx Emissions within GHG Phase 2 Constraints: Main Challenges and Technology Directions

2018-04-03
2018-01-0331
Increasing efforts to minimize global warming has led to regulation of greenhouse gas (GHG) emissions of automotive applications. The US is frontrunner regarding implementation of GHG related legislation with the introduction of GHG phase 1 and phase 2, ultimately targeting a 40% fuel consumption reduction in 2027 compared to 2010 on vehicle level. More specific, engines are required to reduce CO2 emissions by 6% compared to GHG phase 1 levels. Next to the GHG emission legislation, more stringent legislation is anticipated in the US to further reduce NOx emissions: a further 90% reduction is targeted as soon as 2024 compared to 2010 standard. Meeting these anticipated ultra-low NOx standards within the GHG phase 2 constraints on CO2 poses a great challenge. This paper presents an overview of the main challenges and key aspects regarding meeting ultra-low NOx requirements within the constraints on CO2 and N2O set by GHG phase 2 regulations.
Journal Article

Development and Application of a Virtual NOx Sensor for Robust Heavy Duty Diesel Engine Emission Control

2017-03-28
2017-01-0951
To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world operation. In such concept, the on-line availability of engine-out NOx emission is crucial. Here, the use of a Virtual NOx sensor can be of great added-value. Virtual sensing enables more direct and robust emission control allowing, for example, engine-out NOx determination during conditions in which the hardware sensor is not available, such as cold start conditions. Furthermore, with use of the virtual sensor, the engine control strategy can be directly based on NOx emission data, resulting in reduced response time and improved transient emission control. This paper presents the development and on-line implementation of a Virtual NOx sensor, using in-cylinder pressure as main input.
Technical Paper

Robust, Model-Based Urea Dosing Control for SCR Aftertreatment Systems using a Cross-Sensitive Tailpipe NOx Sensor

2017-03-28
2017-01-0938
This article describes a NOx sensor based urea dosing control strategy for heavy-duty diesel aftertreatment systems using Selective Catalytic Reduction. The dosing control strategy comprises of a fast-response, model-based ammonia storage control system in combination with a long-timescale tailpipe-feedback module that adjusts the dosing quantity according to current aftertreatment conditions. This results in a control system that is robust to system disturbances such as biased NOx sensors and variations in AdBlue concentrations. The cross-sensitivity of the tailpipe NOx sensor to ammonia is handled by a novel, smart signal filter that can reliably identify the contributions of NOx and NH3 in the tailpipe sensor signal, without requiring an artificial perturbation of the dosing signal.
Technical Paper

Development, Validation and ECM Embedment of a Physics-Based SCR on Filter Model

2016-09-27
2016-01-8075
SCR on Filter (SCRoF) is an efficient and compact NOX and PM reduction technology already used in series production for light-duty applications. The technology is now finding its way into the medium duty and heavy duty market. One of the key challenges for successful application is the robustness to real world variations. The solution to this challenge can be found by using model-based control algorithms, utilizing state estimation by physics-based catalyst models. This paper focuses on the development, validation and real time implementation of a physics-based control oriented SCRoF model. An overview of the developed model will be presented, together with a brief description of the model parameter identification and validation process using engine test bench measurement data. The model parameters are identified following a streamlined approach, focusing on decoupling the effects of deNOx and soot phenomena.
Journal Article

Robust, Cost-Optimal and Compliant Engine and Aftertreatment Operation using Air-path Control and Tailpipe Emission Feedback

2016-04-05
2016-01-0961
Heavy-duty diesel engines are used in a wide range of applications. For varying operating environments, the engine and aftertreatment system must comply with the real-world emission legislation limits. Simultaneously, minimal fuel consumption and good drivability are crucial for economic competitiveness and usability. Meeting these requirements takes substantial development and calibration effort, and complying with regulations results in a trade-off between emissions and fuel consumption. TNO's Integrated Emission Management (IEM) strategy finds online, the cost-optimal point in this trade-off and is able to deal with variations in operating conditions, while complying with legislation limits. Based on the actual state of the engine and aftertreatment system, an optimal engine operating point is computed using a model-based optimal-control algorithm.
Technical Paper

NH3 Measurements for Advanced SCR Applications

2016-04-05
2016-01-0975
Since the introduction of Euro IV legislation [1, 2], Selective Catalytic Reduction (SCR) technology using liquid urea injection is (one of) the primary methods for NOx reduction in many applications. Ammonia (NH3) is the reagent and key element for the SCR system and its control calibration to meet all operational requirements. TNO and Horiba are highly motivated to facilitate a correct interpretation and use of emissions measurement data. Different hypotheses were defined to investigate the impact of temperatures and flow rates on urea decomposition. These parameters are known to strongly affect the urea decomposition process, and thus, the formation of NH3. During a test campaign, different SCR catalyst feed gas conditions (mass flow, temperature, species and dosing quantities) were applied. Three Horiba FTIR gas analyzers were installed to simultaneously sample either all upstream or all downstream of the SCR brick. Both steady-state and dynamic responses were evaluated.
Journal Article

Automated Model Fit Method for Diesel Engine Control Development

2014-04-01
2014-01-1153
This paper presents an automated fit for a control-oriented physics-based diesel engine combustion model. This method is based on the combination of a dedicated measurement procedure and structured approach to fit the required combustion model parameters. Only a data set is required that is considered to be standard for engine testing. The potential of the automated fit tool is demonstrated for two different heavy-duty diesel engines. This demonstrates that the combustion model and model fit methodology is not engine specific. Comparison of model and experimental results shows accurate prediction of in-cylinder peak pressure, IMEP, CA10, and CA50 over a wide operating range. This makes the model suitable for closed-loop combustion control development. However, NO emission prediction has to be improved.
Technical Paper

Experimental Validation of a Dynamic Waste Heat Recovery System Model for Control Purposes

2013-04-08
2013-01-1647
This paper presents the identification and validation of a dynamic Waste Heat Recovery (WHR) system model. Driven by upcoming CO₂ emission targets and increasing fuel costs, engine exhaust gas heat utilization has recently attracted much attention to improve fuel efficiency, especially for heavy-duty automotive applications. In this study, we focus on a Euro-VI heavy-duty diesel engine, which is equipped with a Waste Heat Recovery system based on an Organic Rankine Cycle. The applied model, which combines first principle modeling with stationary component models, covers the two-phase flow behavior and the effect of control inputs. Furthermore, it describes the interaction with the engine on both gas and drivetrain side. Using engine dynamometer measurements, an optimal fit of unknown model parameters is determined for stationary operating points.
X