Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Road Surface Condition Detection in Bicycle for Active Safety Applications

2017-03-28
2017-01-1730
Nowadays, the tendency of people using bicycles as the way of transportation has increased as well as the tendency of the bicycle accidents. According to the research of National Highway Traffic Safety Administration (NHTSA), National Survey on Bicyclist and Pedestrian Attitude and Behavior, the major root causes of bicycle accidents are from the road surface condition. Thus, this work has developed the system to detect the road surface condition. The system utilizes the laser and camera to measure the height of road. Then, with the information of the road height and bicycle speed, the road surface condition can be classified into 3 categories due to severe condition of the road. For the secure road, cyclists could safely ride on it. For the warning road, cyclists need to slow down the speed. Lastly, for the dangerous road, cyclists have to stop their bicycles.
Technical Paper

A Study on Car Following and Cognitive Ability of Elderly Drivers by Using Driving Simulator

2016-03-27
2016-01-1737
The world is aging rapidly. Many countries can already be categorized as aging or aged societies while a few are becoming super-aged societies. In Thailand as well as in other countries, traffic accidents caused by elderly drivers will continue to rise as a significant percentage of elderly people still prefer to drive. Accidents may be prevented with driving tests and screening methods for elderly drivers. However, it is also necessary to understand the effect of aging on driving ability. With this understanding, driver training, driver assistant systems, and improvements on infrastructure may be designed accordingly. Among various physical changes, cognitive ability of the brain is one of the most significant factors affecting driving ability. In this paper, correlation between various cognitive functions of the brain and car following skill of drivers are considered.
Technical Paper

Vehicle Safety Monitoring System with Next Generation Satellite Navigation: Part 1 Lateral Acceleration Estimation

2015-03-30
2015-01-0123
The road accident is major problem around the world and also in Thailand, The main cause is concerning the driving behavior e.g. uncarefulness, aggression, drowsiness and etc. Dangerous driving is categorized by means of lateral vehicle dynamics when the turning or lane changing is performed, and longitudinal one if the braking or rapid acceleration is occurred. For this reason, we developed the vehicle monitoring system based on novel consumer grade multi-satellite navigation receivers and proposed the lateral acceleration estimation from these data. The system were tested within controlled condition tested track. The multiple satellite system, GPS and multi-GNSS: GPS+Glonass and GPS+Beidou were tested and compared to the reference inertial measurement unit (IMU) As results, the maximum lateral acceleration in tested track were chosen and compared with reference IMU.
Technical Paper

Vehicle Safety Monitoring System with Next Generation Satellite Navigation: Part 2 Excessive Acceleration Detection

2015-03-30
2015-01-0124
The road accident is major concern around the world, so do Thailand. It is caused by three main factors: man, vehicle and infrastructure. The most important part that accounts the safety of vehicle is human. With experiences and careful driver, the accident could be diminished. So that the vehicle monitoring systems are the vital tools to screen out the inexperience or aggressive driver. In this paper, we state the problem about the dangerous driving behavior by monitoring lateral and longitudinal acceleration. For this purpose, the inertial measurement unit should be applied but it is inconvenient to install in the vehicle. Consequently, the vehicle monitoring system were developed based on novel consumer grade multi-satellite navigation receivers and were compared to Racelogic Video V-Box system in controlled condition tested track. The incidents were virtually detected and reviewed. The incident detection algorithm were proposed and tested alongside with receivers.
Technical Paper

Driver Behavior Detection based On PPP-GNSS Technology

2014-03-24
2014-01-2006
Driver behavior is one of the most important factors in safe mobility. In general, various driver maneuvers can be determined from acceleration of the vehicle. Physically, the acceleration and brake can be detected with longitudinal acceleration while turning and lane change can be detected with lateral acceleration. Normally, IMU (inertia measurement unit) has been designated to get these data. However, the IMU is not convenience to install in the vehicles especially as aftermarket parts. Nowadays, navigation system technologies have been much improved, both on availability and accuracy with combination of multiple navigation satellite systems. Normally, it's called Multi-GNSS (multiple global navigation satellite system). In particular, the satellite navigation systems available in this work are GPS, GLONASS, and QZSS. With decimeter precision and the update rate scale up to 10-Hz, the GNSS can be a viable alternative for driver behavior detection.
Technical Paper

A Comparison Study on Saving Fuel by Idle-Stop System in Bangkok Traffic Condition

2013-03-25
2013-01-0069
This paper presents an investigation on fuel consumption in Bangkok traffic condition with an application of idle stop system. Collected data is evaluated by cutoff the fuel usage while the vehicle is in stationary condition. The vehicles in this study are ordinary vehicle which is not the vehicle with idle-stop system. The study includes four levels of congestion and three road side conditions. With idle stop system, for spark ignition engine 40% of fuel consumption rate could be improved in severe condition and 10% improvement in free flow traffic. In addition, the fuel consumption can be improved by 30% for compression ignition engine. Furthermore, the idle stop system improves fuel efficiency in severe congestion to the same level as the free flow traffic
Technical Paper

Development of Tire-Suspension-Steering Hardware In The Loop Simulator for Student Formula Car Handling Testing

2013-03-25
2013-01-0004
This paper presents a Tire-Suspension-Steering Hardware-In-the-Loop Simulator (HILS) system for using in a development of a student formula car suspension. The HILS system was modified from an existing Tire-Suspension-Steering Hardware-In-the-Loop Simulator developed in Chulalongkorn University. The system can be used to reduce the development time and cost when comparing to testing a real prototype car on a test track. Firstly, we designed and built the adjustable support for the student formula car suspension on the HILS such hat wheel parameters such as camber and toe can be adjusted. CATIA V5 was used to design and test the structural strength. On the other hand, the HILS system is used to simulate and test vehicle dynamics by replacing the front wheel of a bicycle model with a real student formula wheel and suspension. The wheel is running on a rotating drum whose speed and orientation can be controlled to simulate the car speed and the tire side slip angle.
X