Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component

2015-04-14
2015-01-0533
In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency. It is found that the implemented Chaboche model is generally more computationally efficient than Sehitoglu model, though they are almost identical in regard to accuracy.
Journal Article

Cyclic Behavior of an Al-Si-Cu Alloy under Thermo-Mechanical Loading

2014-04-01
2014-01-1012
In this paper, the cyclic deformation behavior of an Al-Si-Cu alloy is studied under strain-controlled thermo-mechanical loading. Tests are carried out at temperatures from 20 °C to 440 °C. The effect of strain rate, hold time at temperature and loading sequence are investigated at each temperature. The results show that temperature has a significant effect on the cyclic deformation of Al-Si-Cu alloys. With increasing temperature, the effect of strain rate and hold time become more significant, while load sequence effects remain negligible within the investigated temperature range. Thus, an elasto-viscoplastic model is required for modeling the alloy's behavior at high temperature. This study provides an insight into the necessary information required for modeling of automotive engine components operating at elevated temperature.
Technical Paper

Assessment of Different Joining Techniques for Dissimilar Materials

2014-04-01
2014-01-0790
In this paper, experimental study and FEA simulation are performed to investigate the effect of three different methods for joining dissimilar metal coupons in terms of their strength and load transferring capacity. The joining techniques considered include adhesive bonding, bolting and hybrid bolting-and-bonding. Elastic-plastic material model with damage consideration is used for each of the joint components. Traction-separation rule and failure criterion is defined for adhesive. Load transfer capacity and the failure mode are assessed for each type of joining. Joint strength is examined in terms of the effects of adhesive property, bolt preload level, and friction coefficient. Results show that load transferred and failure mechanism vary significantly between samples with different joint methods; preload evolution in bolt changes with friction coefficient; hybrid joint generally has advantage over the other two methods, namely, bolting-only and bonding-only.
X