Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Identification of Aging Effects in Common Rail Diesel Injectors Using Geometric Classifiers and Neural Networks

2016-04-05
2016-01-0813
Aging effects such as coking or cavitation in the nozzle of common rail (CR) diesel injectors deteriorate combustion performance. This is of particular relevance when it comes to complying with emission legislation and demonstrates the need for detecting and compensating aging effects during operation. The first objective of this paper is to analyze the influence of worn nozzles on the injection rate. Therefore, measurements of commercial solenoid common rail diesel injectors with different nozzles are carried out using an injection rate analyzer of the Bosch type. Furthermore, a fault model for typical aging effects in the nozzle of the injector is presented together with two methods to detect and identify these effects. Both methods are based on a multi-domain simulation model of the injector. The needle lift, the control piston lift and the pressure in the lower feed line are used for the fault diagnosis.
Technical Paper

Modeling and Experimental Validation of the Solenoid Valve of a Common Rail Diesel Injector

2014-04-01
2014-01-0195
Common rail diesel injectors are multi-domain systems with complex interactions between mechanical, hydraulic and electrical components. For a detailed understanding of the dynamic behavior and for further performance improvements, often simulation models are indispensable. Injection dynamics is influenced by the opening and closing dynamics of the solenoid valve. Therefore an accurate simulation model of the solenoid valve is necessary for injector simulations. The objective of this study is to present a validated simulation model of the solenoid valve of a commercially available common rail diesel injector. For modeling the solenoid valve, a division into a mechanical and a magnetic submodel is done. The mechanical submodel is made up by a two mass system representing the pin and the armature of the solenoid valve. Contacts are modeled using linear-elastic spring-damper elements and viscous damping is considered for friction representation.
X