Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Journal Article

Collision Prevention While Driving in Real Traffic Flow Using Emotional Learning Fuzzy Inference Systems

2013-04-08
2013-01-0623
This paper proposes a methodology for collision prevention in car following scenarios. For this purpose, Emotional Learning Fuzzy Inference System (ELFIS) approach is used to simulate and predict the behavior of a driver-vehicle-unit in a short time horizon ahead in the future. Velocity of the follower vehicle and relative distance between the follower and the lead vehicles are predicted in a parallel structure. Performance of the proposed algorithm is assessed using real traffic data and superior accuracy of this method is demonstrated through comparisons with another available technique (ANFIS). The predicted future driving states are then used to judge about safety of the current driving pattern. The algorithm is used to generate a warning message while a safe-distance keeping measure is violated in order to prevent a collision. Satisfactory performance of the proposed method is demonstrated through simulations using real traffic data.
Technical Paper

Cascaded Dual Extended Kalman Filter for Combined Vehicle State Estimation and Parameter Identification

2013-04-08
2013-01-0691
This paper proposes a model-based “Cascaded Dual Extended Kalman Filter” (CDEKF) for combined vehicle state estimation, namely, tire vertical forces and parameter identification. A sensitivity analysis is first carried out to recognize the vehicle inertial parameters that have significant effects on tire normal forces. Next, the combined estimation process is separated in two components. The first component is designed to identify the vehicle mass and estimate the longitudinal forces while the second component identifies the location of center of gravity and estimates the tire normal forces. A Dual extended Kalman filter is designed for each component for combined state estimation and parameter identification. Simulation results verify that the proposed method can precisely estimate the tire normal forces and accurately identify the inertial parameters.
X