Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 56
2017-10-08
Technical Paper
2017-01-2331
Amar Deep, Naveen Kumar, Harveer Singh Pali
Abstract The use of alternative fuel has many advantages and the main ones are its renewability, biodegradability with better quality exhaust gas emission, which do not contribute to raise the level of carbon dioxide in the atmosphere. The use of non-edible vegetables oils as an alternative fuels for diesel engine is accelerated by the energy crisis due to depletion of resources and increase in environmental problems. In Asian countries like India, great need of edible oil as a food so cannot use these oils as alternative fuels for diesel engine. However there are many issues related to the use of vegetable oils in diesel engine that is high viscosity, low calorific value, high self-ignition temperature etc. Jatropha curcas has been promoted in India as a sustainable substitute to diesel fuel. This research prepared micro emulsions of ethanol and Jatropha vegetable oil in different ratio and find out the physico-chemical parameters to compare with mineral diesel oil.
2017-03-28
Technical Paper
2017-01-1291
Ashraya Gupta, Harshil Kathpalia, Harshit Aggarwal, Naveen Kumar
Abstract The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
2017-03-28
Technical Paper
2017-01-0788
Harshit Aggarwal, Akshit Goel, Harshil Kathpalia, Naveen Kumar
Abstract Rapid depletion in fuel resources owing to the low efficiency of current automobiles has been a major threat to future generations for fuel availability as well as environmental health. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous (NOx and CO) and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Homogeneous mixing of fuel and air in HCCI leads to cleaner combustion and lower emissions. Since peak temperatures are significantly lower than in typical SI engines, NOx levels and soot are reduced to some extent. Because of absence of complete homogeneous combustion but quasi homogeneous combustion present in HCCI, there is still a possibility of further reducing the emissions as well as enhancing the engine performance.
2016-10-17
Technical Paper
2016-01-2265
Ashraya Gupta, Dhruv Gupta, Naveen Kumar
Abstract The diesel engine has for many decades now assumed a leading role in both the medium and medium-large transport sector due to their high efficiency and ability to produce high torque at low RPM. Furthermore, energy diversification and petroleum independence are also required by each country. In response to this, biodiesel is being considered as a promising solution due to its high calorific value and lubricity conventional petroleum diesel. However, commercial use of biodiesel has been limited because of some drawbacks including corrosivity, instability of fuel properties, higher viscosity, etc. Biodiesel are known for lower CO, HC and PM emissions. But, on the flip side they produce higher NOx emissions. The addition of alcohol to biodiesel diesel blend can help in reducing high NOx produced by the biodiesel while improving some physical fuel properties.
2016-10-17
Technical Paper
2016-01-2249
Akash Gangwar, Abhinav Bhardawaj, Ramesh Singh, Naveen Kumar
Abstract Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOX, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
2016-04-05
Technical Paper
2016-01-0533
Harveer Singh Pali, Naveen Kumar, Kausambi Singh
Abstract In the present investigation AA6082/ SiC MMC composite is fabricated using electromagnetic stir casting technique. Silicon carbide (SiC) of 40 μm size is used as reinforcement and is varied by weight percentage as 0%, 2.5%, 5%, 7.5%, 10% in alloy AA6082. The microstructure of the fabricated composite is studied by scanning electron microscopy (SEM) which shows even distribution of the reinforcement. The mechanical properties improve with SiCp till 7.5%, after that the properties decreases which may be due to presence of porosity during the composite manufacturing. A comparative study of mechanical properties such as tensile strength, hardness and toughness has been done between the composite and base aluminium alloy. After the comparative study it was found that the composite having AA6082/SiC-92.5%/7.5% is best suited. So, it is used for optimization of Electrical Discharge Machining (EDM) process parameters using Taguchi’s design of experiment.
2016-04-05
Technical Paper
2016-01-1004
Somendra Pratap Singh, Shikhar Asthana, Shubham Singhal, Naveen Kumar
Abstract The energy crisis coupled with depleting fuel reserves and rising emission levels has encouraged research in the fields of performance enhancement, emission reduction technologies and engineering designs. The present paper aims primarily to offset the problem of high emissions and low efficiencies in low cost CI engines used as temporary power solutions on a large scale. The investigation relates to the low cost optimization of an intake runner having the ability to vary the swirl ratio within the runner. Test runs reveal that NOx and CO2 follow a relatively smaller gradient of rise and fall in their values depending on the configuration; whereas UHC and CO have a rapid changes in values with larger gradients. However, in a relative analysis, no configuration was able to simultaneously reduce all emission parameters and thus, there exists a necessity to find an optimized configuration as a negotiation between the improved and deteriorated parameters.
2016-04-05
Technical Paper
2016-01-1264
Tarun Mehra, Naveen Kumar, Salman Javed, Ashish Jaiswal, Farhan javed
Abstract Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
2016-04-05
Technical Paper
2016-01-1281
Jatin Agarwal, Monis Alam, Ashish Jaiswal, Ketan Yadav, Naveen Kumar
Abstract The continued reliance on fossil fuel energy resources is not sufficient to cater to the current energy demands. The excessive and continuous use of crude oil is now recognized as unviable due to its depleting supplies and elevating environmental degradation by increased emissions from automobile exhaust. There is an urgent need for a renewable and cleaner source of energy to meet the stringent emission norms. Hythane is a mixture of 20% hydrogen and 80% methane. It has benefits of low capital and operating costs and is a cleaner alternative than crude oil. It significantly reduces tailpipe emissions and is the cheapest way to meet new emission standards that is BS-IV. Hythane produces low carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons (HC) on combustion than crude oil and helps in reduction of greenhouse gases.
2016-04-05
Technical Paper
2016-01-1277
Monis Alam, Ashish Jaiswal, Jatin Agarwal, Ketan Yadav, Naveen Kumar
Abstract Gasoline has been the major fuel in transportation, its good calorific value and high volatility have made it suitable for use in different injection methods. The drastic increase in use of carbon based fuels has led to increase in harmful emissions, thus resulting in implementation of stricter emissions norms. These harmful emissions include carbon monoxide and NOx. To meet the new norms and reduce the harmful emissions, better techniques have to be implemented to achieve better combustion of gasoline and reduce the amount of carbon monoxide in the exhaust. One such way of doing this is by enriching gasoline with hydrogen. Due to its low activation energy and high calorific value, the high energy released from hydrogen can be used to achieve complete combustion of gasoline fuel. However, there are certain drawbacks to the use of hydrogen in spark ignition engine, knocking and overheating of engine parts being the major problems.
2016-04-05
Technical Paper
2016-01-1269
Naveen Kumar, Harveer Singh Pali
Abstract The present study was carried to explore the potential suitability of biodiesel as an extender of Kerosene in an off road dual fuel (gasoline start, kerosene run) generator set and results were compared with kerosene base line data. The biodiesel was blended with kerosene in two different proportions; 2.5% and 5% by volume. Physico-chemical properties of blends were also found to be comparable with kerosene. Engine tests were performed on three test fuels namely K100 (Kerosene 100%), KB 2.5 (Kerosene 97.5% + Biodiesel 2.5%) and KB5 (Kerosene 95% + Biodiesel 5%). It was found that brake thermal efficiency [BTE] increases up to 3.9% while brake specific energy consumption [BSEC] decreases up to 2.2% with increasing 5% volume fraction of biodiesel in kerosene. The exhaust temperature for blends was lower than kerosene. The test engine emitted reduced Carbon monoxide [CO] emission was 7.4 % less than using neat kerosene as compared to kerosene-biodiesel blends.
2016-04-05
Technical Paper
2016-01-0669
Shikhar Asthana, Shubham Bansal, Shubham Jaggi, Naveen Kumar
Abstract The Automobile industry is under great stress due to greenhouse gas emissions and health impacts of pollutants. The rapid decrease of fossil fuels has promoted the development of engine designs having higher fuel economy. At the same time, these designs keep the stringent emission standards in check without sacrificing brake power. Variable Compression Ratio (VCR) is one such measure. This work reviews the technological advancements in the design of a VCR engine. VCR engines can minimize possible risks of irregular combustion while optimizing Brake specific fuel consumption towards higher power and torque. An increase in fuel economy is seen for VCR naturally aspirated engines when coupled with downsizing. In addition to this, emissions of carbon dioxide decreases due to effective utilization of fuel at high loads. Since the first VCR design, there have been various modifications and improvements in VCR engine design.
2016-04-05
Technical Paper
2016-01-1015
Somendra Pratap Singh, Shikhar Asthana, Naveen Kumar
Abstract Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
2016-02-01
Technical Paper
2016-28-0140
Chinmaya Mishra, Naveen Kumar, Purna Mishra, Biswa Kar
Abstract In the present experimental investigation, performance, emission and combustion characteristics of a single cylinder diesel engine using diesel-biodiesel blends and antioxidant containing biodiesel test fuels was carried out. The potential suitability of aromatic amine based antioxidants to enhance the oxidation stability of biodiesel on one hand and reduction of tail pipe oxides of nitrogen (NOx) on the other were evaluated. Tertiary Butyl Hydroquinone (TBHQ) was considered as the antioxidant and Calophyllum Inophyllum vegetable oil was taken as the feedstock for biodiesel production. The test fuel samples were neat diesel (D100), 10% and 20% blend of Calophyllum biodiesel with diesel (CB10 and CB20) and 1500 ppm of TBHQ in CB10 and CB20 (CBT10 and CBT20). The results indicated that neat biodiesel blended test fuels (CB10 and CB20) exhibited lower brake thermal efficiency compared to the diesel baseline by a margin of 3% to 10% at full load.
2015-09-29
Technical Paper
2015-01-2819
Vasu Kumar, Dhruv Gupta, Mohd Waqar Naseer Siddiquee, Aksh Nagpal, Naveen Kumar
Abstract The growing energy demand and limited petroleum resources in the world have guided researchers towards the use of clean alternative fuels like alcohols for their better tendency to decrease the engine emissions. To comply with the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. The use of alcohols as a blending agent in diesel fuel is rising, because of its benefits like enrichment of oxygen, premixed low temperature combustion (LTC) and enhancement of the diffusive combustion phase. Several researchers have investigated the relationship between LTC operational range and cetane number. In a light-duty diesel engine working at high loads, a low-cetane fuel allowed a homogeneous lean mixture with improved NOx and smoke emissions joint to a good thermal efficiency.
2015-09-29
Technical Paper
2015-01-2881
Dhruv Gupta, Vasu Kumar, Soumya Roy, Naveen Kumar
Abstract The danger posed by climate change and the striving for securities of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Man's energy requirements are touching astronomical heights. The natural resources of the Earth can no longer cope with it as their rate of consumption far outruns their rate of regeneration. The automotive sector is without a doubt a chief contributor to this mayhem as fossil fuel resources are fast depleting. The harmful emissions from vehicles using these fuels are destroying our forests and contaminating our water bodies and even the air that we breathe. The need of the hour is to look not only for new alternative energy resources but also clean energy resources. Hydrogen is expected to be one of the most important fuels in the near future to meet the stringent emission norms.
2015-09-15
Technical Paper
2015-01-2423
Samarth Jain, Soumya Roy, Dhruv Gupta, Vasu Kumar, Naveen Kumar
Abstract The art and science of thrust vectoring technology has seen a gradual shift towards fluidic thrust vectoring techniques owing to the potential they have to greatly influence the aircraft propulsion systems. The prime motive of developing a fluidic thrust vectoring system has been to reduce the weight of the mechanical thrust vectoring system and to further simplify the configuration. Aircrafts using vectored thrust rely to a lesser extent on aerodynamic control surfaces such as ailerons or elevator to perform various maneuvers and turns than conventional-engine aircrafts and thus have a greater advantage in combat situations. Fluidic thrust vectoring systems manipulate the primary exhaust flow with a secondary air stream which is typically bled from the engine compressor or fan. This causes the compressor operating curve to shift from the optimum condition, allowing the optimization of engine performance. These systems make both pitch and yaw vectoring possible.
2015-09-15
Technical Paper
2015-01-2576
Vasu Kumar, Vishvendra Tomar, Naveen Kumar, Samarth Jain
Abstract The Aerofoil theory along with its design has integrated itself into the vast areas of applications ranging from Automobile, Aeronautical, Wind Turbine, Micro-Vehicles, UAVs applications. In this paper, knowing the intricacy of the airfoil's applications, A MATLAB Code for NACA-2415 Airfoil is developed and a Model with dimensions c=180mm, w=126mm, tmax=27mm is generated. The model is then subjected to Flow Simulation with various input parameters: Reynolds Numbers taken are- (REN-1) 105 and (REN-2) 2×105 [Laminar External Flow], Angles of attack taken are-0°, 4°, 8°, 12°. The pressure and velocity distribution along the airfoil sketch curve are graphed qualitatively, emphasizing on the flow separation leading to the transition from laminar to turbulent flow. The various aerodynamics characteristic curves for coefficient of pressure, coefficient of lift and coefficient of drag are plotted against different angle of attacks for REN-1 and REN-2.
2015-04-14
Technical Paper
2015-01-0958
Naveen Kumar, Sidharth Bansal, Harveer Singh Pali
Abstract Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
2015-04-14
Technical Paper
2015-01-1297
Harveer Singh Pali, Naveen Kumar, Yahaya Alhassan, Amar Deep
Abstract Biodiesel production has been getting global awareness since Petroleum prices are escalating continuously. As biodiesel is gaining considerable demand, standards are vital for its commercialization and market introduction. Feedstocks availability has posed serious challenges, thus the need for non-edible and unexplored feedstocks has risen. In Indian context, Biodiesel is produced using sal seed oil which is potentially available in Indian forest as a non-edible feedstock. The present paper deals with the production optimization using design of experiments and fuel property characterization of Sal biodiesel (sal methyl esters). Transesterification process parameters like catalyst concentration (% w/w), Oil to Methanol molar ratio, reaction time (min) and reaction temperature (°C) were considered the significance factors and the response was taken as the Yield (% w/w). Experiment matrix with several combinations of factors was generated.
2015-04-14
Technical Paper
2015-01-1678
Akshay Kumar, Naveen Kumar, Dhruv Gupta, Vasu Kumar
Abstract Increased demand and use of fossil fuels in transportation sector accompanied by the global oil crisis does not support sustainable development for the future generations to come. Not only that, today's on-road vehicles produce over one third of the CO and NOX present in our atmosphere and over twenty per cent of the global warming pollution. This air pollution carries significant risks for human health and the environment. Through clean vehicle and fuel technologies, it is possible to significantly reduce air pollution from our vehicles. In such a grim situation, Compressed Air Vehicles (CAV) powered by pressurized air stored in high pressure storage tanks seem to be one of the practical solutions available for tackling the fuel crisis and environment related issues.
2015-04-14
Technical Paper
2015-01-1677
Amaya Kak, Naveen Kumar, Bharat Singh, Somendra Singh, Dhruv Gupta
Abstract Increased dependency on fossil fuels has led to its depletion as well as affected the environment adversely. Moreover, increasing crude oil prices is pressurizing vehicle manufacturers to invent new technology so as to increase fuel economy and at the same time to keep emissions under control. Hydrogen has gained popularity not just in terms of being an abundant alternative but also due to being a very clean propellant. In the present investigation, hydrogen boosting has been performed on an SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation. The engine selected for experimental analysis is a single cylinder, air cooled spark ignition engine that has been modified for hydrogen injection in the intake manifold prior to the port with the injection timing being held constant throughout the experiment.
2015-04-14
Technical Paper
2015-01-1210
Bharat Singh, Naveen Kumar, Amaya Kak, Satya Kaul
Abstract At present, vast numbers of problems are triggered due to growing global energy crisis and rising energy costs. Since, on-road vehicles constitute the majority share of transportation; any energy losses in them will have a direct effect on the overall global energy scenario. Most of the energy lost is dissipated from the exhaust, cooling, and lubrication systems, and, most importantly, in the braking system. About 6% of the total energy produced is lost with the airstream in form of heat energy when brakes are applied. Thus, various technological systems need to be developed to conserve energy by minimize energy losses while application of brakes. Regenerative Braking is one such system or an energy recovery mechanism causing the vehicle to decelerate by converting its kinetic energy into another form (usually electricity), which further can be used either immediately or stored until needed.
2015-01-14
Technical Paper
2015-26-0049
Amar Deep, Naveen Kumar, Mukesh Kumar, Ashish Singh, Dhruv Gupta, Jitesh Singh Patel
Abstract In the past few decades, use of energy resources in industrial and transportation sector have reached to its peak resulting in depleting resources and environment squalor. Vegetable oils, which have properties comparable to diesel fuel, are considered promising alternative fuels for unmodified diesel engines. However, high viscosity of vegetable oils is a major challenge which could be reduced by blending with alcohols. The aim of the present study was to investigate the suitability of orange peel oil and n-butanol blends as an alternative fuel for CI engine. Various blends of butanol with orange peel oil were prepared on volumetric basis and named as B10OPO90 (10% n-butanol and 90% orange peel oil), B20OPO80 (20% n-butanol and 80% orange peel oil), B30OPO70 (30% n-butanol and 70% orange peel oil) and B40OPO60 (40% n-butanol and 60% orange peel oil). All blends were found homogenous and various physico-chemical properties were evaluated in accordance to relevant standards.
2014-10-13
Technical Paper
2014-01-2778
Amar Deep, Naveen Kumar, Dhruv Gupta, Abhishek Sharma, Jitesh Singh Patel, Ashish Karnwal
Abstract Diesel engines are employed particularly in the field of heavy transportation and agriculture on account of their higher thermal efficiency and durability. As these engines, are the backbones of contemporary global transportation and accounts a 30% of world's energy consumption, which is second highest after the industrial sector. Therefore, the fossil fuel consumption becomes the prime concern. Following the global energy crisis and the increasingly stringent emission norms, the search for alternative renewable fuels has intensified. Currently, biodiesel (BD) has been identified as the most attractive and practical choice to replace fossil fuel as the main source of energy, due to the similarity in the properties with conventional diesel. However, its development and application have been hindered by the high cost of required feedstock. Therefore, in recent years, researchers have been seeking the alternative sources of non-edible oil which are economical.
2014-10-13
Technical Paper
2014-01-2773
Vasu Kumar, Naveen Kumar, Vishvendra Tomar, Gagneet Kalsi
Abstract The world today is facing the effect of the dependence on fossil fuels. Also, the rate of consumption of Fossil derived fuels is alarming. The use of non-conventional energy sources is to be increased so as to tackle the global climatic changes, environmental pollution and also to lower down the rate of depletion of fossil fuels. The urgent need to replace the petroleum products having harmful emissions has leaded us to the Biodiesel. Biodiesel is a well-known alternative for diesel with an advantage over the later because of its biodegradable, less toxic nature, superior lubricity, better emission characteristics and in a way environment friendly. The present study focuses on the comparative study and analysis of performance and emission characteristics of a light duty diesel engine on blends of Fish oil Biodiesel in Diesel and Calophyllum Inophyllum Oil Biodiesel in Diesel.
2014-10-13
Technical Paper
2014-01-2781
Nishant Mohan, Mayank Sharma, Ramesh Singh, Naveen Kumar
Abstract The need for advanced lubricants is increasing rapidly due to the current wide range of operational usage, i.e., high loads and speeds of motion between friction pairs, broader temperature range, and the overall requirements for increased reliability and service life of machinery. It is essentially important to develop specialized anti-friction and anti-wear materials that will help in preventing wear and decreasing friction, thereby saving fuel and electricity. Simultaneously, such materials are also expected to reduce vibration, noise and maintenance of machine parts. Thus, the research into extending the service life of such materials continues to be imperative. Nanoparticles (NPs) present a novel approach in this regard, as they can be used in lubricants in between two mating contact surfaces as a third body.
2014-10-13
Technical Paper
2014-01-2651
Vipul Vibhanshu, Ashish Karnwal, Amar Deep, Naveen Kumar
The rising cost and limited availability of crude oil in international market has provided an opportunity to look for substitute of fossil fuel. Scientists all over the world are experimenting on variety of renewable fuels for meeting the future energy demands. Bio origin fuels are fast becoming potential alternative resources to replace the fossil fuels. The vegetable oils, derived from oil seed crops have got 90 to 95% energy value of diesel on volume basis, comparable cetane number and can substitute upto 20% (v/v) of diesel fuel. Mahua seed oil is common ingredient of hydrogenated fat. Two-step transesterification process was employed to synthesize biodiesel from Mahua Oil (Madhuca-indica) and analysis of Physico-chemical properties as well as the combustion, performance and emission characteristics was done by taking 10, 20 and 100 % blend with diesel. The physico-chemical properties of the blends were found to be comparable to diesel.
2014-10-13
Technical Paper
2014-01-2830
Amar Deep, Naveen Kumar, Ashish Karnwal, Dhruv Gupta, Vipul Vibhanshu, Abhishek Sharma, Jitesh Singh Patel
Abstract The interest of using alternative fuels in diesel engines has been accelerated exponentially due to a foreseen scarcity in world petroleum reserves, increase in the prices of the conventional fossil fuels and restrictions on exhaust emissions such as greenhouse gases from internal combustion (IC) engines initiated by environmental concerns. The constant trade-off between efficiency and emissions should be in proper balance with the conventional fuels in a fuel design process for future combustors. Unlike gasoline and diesel, alcohols act as oxygenated fuels. Adding alcohols to petroleum products allows the fuel to combust properly due to the presence of oxygen, which enhances premixed combustion phase, improves the diffusive combustion phase which increases the combustion efficiency and reduces air pollution. The higher activation energy of alcohols leads to better resistance to engine knocking that allows higher compression ratios and greater engine thermal efficiencies.
2014-09-30
Journal Article
2014-01-2433
Abhishake Goyal, Nadeem Yamin, Naveen Kumar
Abstract Fuel cells are a promising energy source on account of their high efficiency and low emissions. Proton exchange membrane fuel cells (PEMFC) are clean and environmental-friendly power sources, which can become future energy solutions especially for transport vehicles. They exhibit good energy efficiency and high power density per volume. Working at low temperatures (<90°C), hydrogen fuelled proton exchange membrane fuel cells (PEMFCs) are identified as promising alternatives for powering autos, houses and electronics. At the middle of the proton exchange membrane (PEM) fuel cell is the membrane electrode assembly (MEA). The MEA consists of a proton exchange membrane, catalyst layers, and gas diffusion layers (GDL). However, most of the researchers have already mentioned that PEMFC are not competitive enough to rechargeable lithium ion battery with respect to price because of the rare metal used such as platinum in it.
Viewing 1 to 30 of 56

Filter

  • Range:
    to:
  • Year: