Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comprehensive 3D Thermal Modeling of Vehicle-Ready Battery Module

2020-04-14
2020-01-1385
Thermal management of vehicle battery pack is crucial in determining the life/ageing of the battery pack, in establishing the range of the vehicle on a day to day basis and in determining the safety of the vehicle and occupants. An effective design of a thermal management system cannot be established solely through experimentation as it is time consuming and costly. Accurate computational models are required to aid in the design process. This study describes the development and validation of 3D computational model for simulating electrical and thermal characteristics of a vehicle-ready battery module. The modeling process starts with the full 3D CAD geometry of the module including the coolant channels and cold plate. As part of the study, an experimental test case was setup. This included a climate chamber for the initial soak of the module and to control ambient temperature. Coolant was pumped through channels underneath the cold plate atop which the cells sat in blocks.
Journal Article

Optimum Seat Cooling Distribution for Targeted Human Thermal Comfort®

2017-03-28
2017-01-0170
Seat cooling and heating strategies have enhanced human thermal comfort in automotive environments. Cooling/heating strategies also need to focus on the distribution of the seat cooling/heating power across the seat and the effect of such distributions on human thermal comfort. This paper studies the effect of active cooling combined with ventilation only strategy on thermal comfort. As part of the study, heat flux between the occupant and seat is mapped and is correlated to a step increase in the occupant’s local thermal comfort of body segments in contact with seat. A human physiological model and the Berkeley comfort model were combined to determine power and optimum placement of cooling to effectively cool an occupant using a climate control seat in a warm environment. This leads to a new approach using asymmetric seat cooling to distribute cooling power resulting in improved and balanced subjective comfort than traditional climate seat and ventilation technologies.
Journal Article

Options for Coupled Thermal-Electric Modeling of Battery Cells and Packs

2014-04-01
2014-01-1834
Integration of advanced battery systems into the next generation of hybrid and electric vehicles will require significant design, analysis, and test efforts. One major design issue is the thermal management of the battery pack. Analysis tools are being developed that can assist in the development of battery pack thermal design and system integration. However, the breadth of thermal design issues that must be addressed requires that there are a variety of analysis tools to address them efficiently and effectively. A set of battery modeling tools has been implemented in the thermal modeling software code PowerTHERM. These tools are coupled thermal-electric models of battery behavior during current charge and discharge. In this paper we describe the three models in terms of the physics they capture, and their input data requirements. We discuss where the capabilities and limitations of each model best align with the different issues needed to be addressed by analysis.
X