Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Analytical Prototype Model Development - Continuous Model Build Approach

2017-03-28
2017-01-1312
Computer Aided Engineering (CAE) has been widely utilized as an essential component of the product development phase in the automotive industry. Every successful automotive company has established its own design and development approach in order to build competitive, better and safer cars, in a more cost-effective manner. In an ever demanding automotive sector, every key player wants its products to be hitting the roads at shorter intervals but also develop them to be highly competitive. Ford product development processes define the multiple phases of the product development progression and timeline. For each of the phases, Vehicle CAE models are built to assess Vehicle NVH / Durability/ Safety/ Thermal & Aero and other performances. The design level of the input data and the data availability timings, to build the Vehicle CAE models, play a significant role in determining the quality and timing of the product development progression.
Journal Article

Structural Optimization of Thin-Walled Tubular Structures for Progressive Buckling Using Compliant Mechanism Approach

2013-04-08
2013-01-0658
This investigation introduces a methodology to design dynamically crushed thin-walled tubular structures for crashworthiness applications. Due to their low cost, high-energy absorption efficiency, and capacity to withstand long strokes, thin-walled tubular structures are extensively used in the automotive industry. Tubular structures subjected to impact loading may undergo three modes of deformation: progressive crushing/buckling, dynamic plastic buckling, and global bending or Euler-type buckling. Of these, progressive buckling is the most desirable mode of collapse because it leads to a desirable deformation characteristic, low peak reaction force, and higher energy absorption efficiency. Progressive buckling is generally observed under pure axial loading; however, during an actual crash event, tubular structures are often subjected to oblique impact loads in which Euler-type buckling is the dominating mode of deformation.
X