Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Fuel and Recharging Effects on Regulated and Unregulated Emissions from a Gasoline and a Diesel Plug-In Hybrid Electric Vehicle

2022-08-30
2022-01-1125
As passenger cars are progressively moving towards more electrification, Plug-in Hybrid Electric Vehicles (PHEVs) may play a greater role. Several questions arise regarding their performance in real-world conditions, their optimal configuration - in terms of battery capacity, fuel and powertrain used - and their pollutant emissions. In this context, two PHEVs complying with Euro 6d standards were evaluated on a chassis-dyno and on-road using the same road profile, complying with RDE requirements. The two vehicles differ only by their powertrain, one being diesel-fueled, and the other being gasoline-fueled. The vehicles were tested under various conditions, including charge depleting and charge sustaining modes (i.e., tests respectively starting with a fully charged battery and a discharged battery), with various fuel compositions including traditional fossil-based fuels, 100% renewable Hydrotreated Vegetable Oil (HVO) and 100% renewable gasoline, blended with 20% v/v ethanol (E20).
Technical Paper

Impact of Fuel Octane Quality on Various Advanced Vehicle Technologies

2020-04-14
2020-01-0619
Fuel with higher octane content is playing a key role in optimising engine performance by allowing a more optimal spark timing which leads to increased engine efficiency and lower CO2 emissions. In a previous study the impact of octane was investigated with a fleet of 20 vehicles using market representative fuels, varying from RON 91 to 100. The resulting data showed a clear performance and acceleration benefit when higher RON fuel was used. In this follow-up study 10 more vehicles were added to the database. The vehicle fleet was extended to be more representative of Asian markets, thus broadening the geographical relevance of the database, as well as adding vehicles with newer technologies such as boosted down-sized direct injection engines, or higher compression ratio engines. Eight different fuel combinations varying in RON were tested, representing standard gasoline and premium gasoline in different markets around the world.
Technical Paper

A Study of Diesel Fuel Injector Deposit Effects on Power and Fuel Economy Performance

2017-03-28
2017-01-0803
Injector cleanliness is well characterised in the literature [1,2,3,4] as a key factor for maintained engine performance in modern diesel cars. Injector deposits have been shown to reduce injector flow capacity resulting in power loss under full load; however, deposit effects on fuel economy are less well characterised. A study was conducted with the aim of developing an understanding of the impact of diesel injector nozzle deposits on fuel economy. A series of tests were run using a previously published chassis dynamometer test method. The test method was designed to evaluate injector deposit effects on performance under driving conditions more representative of real world driving than the high intensity test cycle of the industry standard, CEC DW10B engine test, [1]. The efficacy of different additive levels in maintaining injector cleanliness and therefore power and fuel economy was compared in a light duty Euro 5 certified vehicle.
Journal Article

Linking the Physical Manifestation and Performance Effects of Injector Nozzle Deposits in Modern Diesel Engines

2015-04-14
2015-01-0892
The formation of deposits within injector nozzle holes of common-rail injection fuel systems fitted to modern diesel cars can reduce and disrupt the flow of fuel into the combustion chamber. This disruption in fuel flow results in reduced or less efficient combustion and lower power output. Hence there is sustained interest across the automotive industry in studying these deposits, with the ultimate aim of controlling them. In this study, we describe the use of Scanning Electron Microscopy (SEM) imaging to characterise fuel injector hole deposits at intervals throughout an adaptation of the CEC Direct Injection Common Rail Diesel Engine Nozzle Coking Test, CEC F-98-08 (DW10B test)[1]. In addition, a similar adaptation of a previously published Shell vehicle test method [2] was employed to analyse fuel injector hole deposits from a fleet of Euro 5 vehicles. During both studies, deposits were compared after fouling and after subsequent cleaning using a novel fuel borne detergent.
Journal Article

Formation and Removal of Injector Nozzle Deposits in Modern Diesel Cars

2013-04-08
2013-01-1684
Deposits forming in the injector nozzle holes of modern diesel cars can reduce and disrupt the fuel injected into the combustion chamber, causing reduced or less efficient combustion, resulting in power loss and increased fuel consumption. A study of the factors affecting injector nozzle tip temperature, a parameter critical to nozzle deposit formation, has been conducted in a Peugeot DW10 passenger car bench engine, as used in the industry standard CEC F-098 injector nozzle deposit test, [1]. The findings of the bench engine study were applied in the development of a Chassis Dynamometer (CD) based vehicle test method using Euro 5 compliant vehicles. The developed test method was refined to tune the conditions as far as practicable towards a realistic driving pattern whilst maintaining sufficient deposit forming tendency to enable test duration to be limited to a reasonable period.
X