Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development and Validation of a Simulation Model for Urea-Water-Solution Decomposition for Automotive SCR Systems

2015-09-29
2015-01-2795
Stringent diesel emission regulations have been forcing constant reduction in the discharge of particulate matter and nitrogen oxide (NOx). Current state-of-the-art in-cylinder solutions are falling short of achieving these limits. For this reason engine manufacturers are looking at different ways to meet the emission regulations. Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is emerging as preferred technology for meeting stringent NOx emission standards across the world. SCR system designers face several technical challenges, such as avoiding ammonia slip, urea crystallization, low temperature deposits and other potential pitfalls. Simulation can help to develop a deep understanding of these technical challenges and issues, identify root causes of problems and help develop better designs. This paper describes the modeling approach for Urea Water Solution (UWS) spray and its interaction with canister walls and exhaust gases.
Technical Paper

Simulation Driven Design of Engine Cylinder Head

2015-04-14
2015-01-1739
Cylinder head design is one of the most involved disciplines in engine design. Whether designing an altogether new head or revamping an old one, several different coupled and inter-dependent technologies ranging from heat transfer, fluid flow, combustion, material non-linearity, structural and fatigue have to be accounted. Simultaneous designing of ports, jacket and combustion chamber leads to cylinder head design, which is then tested for its strength and durability. Traditionally a series of analytical, empirical, test-based and simulation based exercises are conducted to design cylinder heads. With increasing pressure on reducing cost and turnaround time, focus on moving towards a quasi-simulation based design and development of cylinder heads is gaining strength. This paper talks about how a simulation driven process for cylinder head design can be developed.
Technical Paper

Coupled Approach to Perform Thermal Analysis of a Heavy Duty Diesel Engine

2015-01-14
2015-26-0192
CFD simulations of an engine cooling system needs to resolve two aspects of the system; in-cylinder combustion and engine cooling. Underlying physics of an in-cylinder combustion process and heat transfer through engine cooling system requires very different time scales for resolution. This puts a limitation on practicality of solving the two problems simultaneously for any industrial case. Instead of solving the problem simultaneously, solution for an engine cooling system operating at a constant load can be derived using the coupled approach. This involves running two different CFD simulations: a transient in-cylinder simulation to model combustion in the engine, and a steady state CHT simulation using engine cooling system for heat transfer. These simulations are thermally coupled through boundary conditions and are performed in cyclic manner one after the other. Simulations are continued till the change in temperature with coupled cycles becomes insignificant.
X