Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

An Improved Human Biodynamic Model Considering the Interaction between Feet and Ground

2015-04-14
2015-01-0612
Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases.
Journal Article

Modeling Air-Spring Suspension System of the Truck Driver Seat

2014-04-01
2014-01-0846
The suspension system of a heavy truck's driver seat plays an important role to reduce the vibrations transmitted to the seat occupant from the cab floor. Air-spring is widely used in the seat suspension system, for the reason that its spring rate is variable and it can make the seat suspension system keep constant ‘tuned’ frequency compared to the conventional coil spring. In this paper, vibration differential equation of air-spring system with auxiliary volume is derived, according to the theory of thermodynamic, hydrodynamics. The deformation-load static characteristic curves of air-spring is obtained, by using a numerical solution method. Then, the ADAMS model of the heavy truck's driver seat suspension system is built up, based on the structure of the seat and parameters of the air-spring and the shock-absorber. At last, the model is validated by comparing the simulation results and the test results, considering the seat acceleration PSD and RMS value.
Technical Paper

Robust Design of Load Sensing Proportional Valve by Orthogonal Experiment Analysis with Constrained Multi-objective Genetic Algorithm

2013-04-08
2013-01-0378
This paper deals with the robust design of the Load Sensing Proportional Valve (LSPV). To find out the parameters which have main effect on the performance of the LSPV, the DOE based on orthogonal experiment is carried out utilizing the LSPV model built in AMESim environment. In order to save computation expense, the RSM technique is used to approximate the optimal objectives and constraints. Then a robust design methodology using multi-objective evolutionary algorithm (MOEA) is performed and a set of non-dominated solutions are therefore obtained. With specified assessments, feasible solutions can therefore be selected from the entire field of the Pareto optimal solutions. The validation is made by Monte Carlo Simulation Technique in terms of the robustness of the feasible solutions.
X