Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

The Accuracy and Sensitivity of 2005 to 2008 Toyota Corolla Event Data Recorders in Low-Speed Collisions

2013-04-08
2013-01-1268
Collision related data stored in the airbag control modules (ACM's) of Toyota vehicles can provide useful information to collision investigators, including both front and rear collision severity. Previous studies of ACM's from other manufacturers found that the devices underestimated the actual speed change in low speed frontal collisions. To quantify the accuracy and sensitivity of select 2005 to 2008 Toyota ACM's, in-vehicle crash tests and linear sled tests were performed in both front and rear impact orientations. A 2005 Toyota Corolla with five extra ACM's mounted in the right front seat position underwent a series of vehicle-to-barrier collisions with speed changes of up to 10 km/h. Next, the same six Toyota ACMs underwent a range of crash pulses using a linear sled. In all in-vehicle tests, the speed change reported by the ACM underestimated the actual speed change for frontal collisions, and overestimated the actual speed change for rear-end collisions.
Technical Paper

The Timing of Pre-Crash Data Recorded in General Motors Sensing and Diagnostic Modules

2006-04-03
2006-01-1397
The sampling rate and synchronization of the pre-impact data stored by General Motors (GM) sensing and diagnostic modules (SDMs) have not been experimentally determined. The goals of this study were to measure the time shift between the SDM-reported data times and algorithm enable, sampling rate variation and the synchronization of the sensor data. In this study, two experiments were performed. First, the SDM of a 2002 Pontiac Sunfire was artificially triggered while the throttle position, engine speed, vehicle speed and brake signals were also being monitored at their source sensors. Second, the throttle and vehicle speed sensors were replaced with artificially generated inputs so the timing of the SDM recorded values could be compared to that of the known inputs. Sampling rate and data synchronization were determined by fitting the SDM recorded values to the measured sensor outputs.
Technical Paper

Low-Speed Impact Testing of Pickup Truck Bumpers

2001-03-05
2001-01-0893
The purpose of this paper was to compare the damage to pickup truck bumpers produced by vehicle-to-barrier and vehicle-to-vehicle collisions of a similar severity, in order to determine whether vehicle-to-barrier tests can serve as surrogates for vehicle-to-vehicle tests in accident reconstruction. Impact tests were conducted on the front and rear bumpers of five pickup trucks. Each truck was subjected to an impact with a fixed barrier and with a passenger vehicle. All impacts resulted in pickup truck speed changes of about 8 km/h. Damage produced in the barrier and vehicle-to-vehicle collisions was similar if both collisions resulted in bumper mount damage on the pickup truck. If there was no bumper mount damage, then the bumper beam deformation depended on the shape of the impactor.
Technical Paper

Tire Friction During Locked Wheel Braking

2000-03-06
2000-01-1314
Accurate values of tire-roadway friction are an essential requirement for an accurate collision reconstruction. This paper presents updated tire friction data for three grades (economy, touring, and performance) of commercially-available tires under both wet and dry road conditions. Differences between tires and road conditions were tested using 540 locked wheel braking tests with a single passenger vehicle on a single road surface over six consecutive days. The vehicle was braked from about 60 km/h to a stop using a mechanical brake actuator to minimize variations in brake pedal application. These results showed differences between the friction measured with economy, touring and performance tires under wet and dry road conditions. Dry road friction values were higher than those reported previously in the literature using older model tires and these dry road friction values were normally distributed.
X