Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Transient Modeling and Validation of an Automotive Secondary Loop Air-Conditioning System

2014-04-01
2014-01-0647
As a potential replacement to traditional automotive R134a direct expansion (DX) systems, a secondary-loop system allows for the usage of flammable but low-GWP refrigerants such as propane (R290). However, as the secondary-loop system has an additional layer of thermal resistance, the cycle's transient behavior and cabin thermal comfort during pull-down and various driving cycles may be different from traditional DX systems. This paper presents a Modelica-based model to simulate both steady-state and transient operation of automotive secondary-loop systems. The model includes a lumped cabin component and a secondary-loop automotive air-conditioning system component. The air-conditioning system component consists of a condenser, a compressor, an expansion device, a coolant plate type heat exchanger, a coolant to air heat exchanger and a coolant pump. The developed model was validated against both steady-state and transient experimental data for an R290 secondary-loop system.
Journal Article

A New Computational Tool for Automotive Cabin Air Temperature Simulation

2013-04-08
2013-01-0868
The thermal comfort inside automotive cabin has been extensively studied for decades. Traditional CFD models provide accurate simulation results of the air temperature distributions inside cabins but at a relatively high computation cost. In order to reduce the computational cost while still providing reasonable accuracy in simulating the air temperature profile inside a mid-sized sedan cabin, this paper introduces a new simulation tool that utilizes a proper orthogonal decomposition (POD) method. The POD method, an interpolation technique, requires only one set of multiple CFD simulations to produce a set of “snapshots”. Later, any simulations that require CFD runs to solve algorithm equation sets can be simplified by using interpolation between the snapshots provided that the geometry of the cabin keeps the same. As a result, the computation time can be reduced to only a few minutes.
X