Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

Smart Soot Sensor for Particulate Filter OBD

2013-04-08
2013-01-1334
In the frame of tighter emission requirements and environmental protection, future standards will soon lead to the use of an OBD soot sensor to monitor DPF leakage. Such a sensor will first be introduced in the US by MY 2015 and then in Europe for Euro 6.2 in 2017. The resistive ceramic sensing technology has been selected by most OEM as the most appropriate. The sensor collects the soot in a time cumulative manner and has an internal heater to clean the ceramic before each measurement sequence. The actual challenge of the hardware is to design a wide band collecting system with a high sensitivity and repeatability circuit processing. Electricfil has overcome major drawbacks of the resistive technology with an innovative sensor tip, with filtration features and a boosting electronic scheme. This sensor integrates internal diagnostic capability at power on and during operation.
Technical Paper

About Cross-Sensitivities of NOx Sensors in SCR Operation

2013-04-08
2013-01-1512
Meeting the upcoming NOx emissions standards is a major challenge for the lean-burn engines, thus requiring a highly efficient exhaust gas aftertreatment. Currently, the Selective Catalytic Reduction (SCR) appears to be the most promising technology, especially when operated with two kinds of reductants: ammonia (generally derived from urea) and ethanol. In order to reach high conversion levels while avoiding the overinjection of the reductant, a very accurate model-based control assisted with at least one NOx sensor is required. This study focuses on the sensitivity of NOx sensors to the main nitrogenous species encountered: ammonia, isocyanic acid (HNCO) and hydrogen cyanide (HCN). The cross-sensitivity to ammonia is the only one to be already described in literature and already used in the urea-SCR control systems to limit the risks of ammonia-slip. However, HNCO can also be found downstream of a catalyst during urea-SCR if the urea delivery or the catalyst are deficient.
X