Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Topology Optimization of Metal and Carbon Fiber Reinforced Plastic (CFRP) Structures under Loading Uncertainties

2019-04-02
2019-01-0709
Carbon fiber reinforced plastic (CFRP) composite materials have gained particular interests due to their high specific modulus, high strength, lightweight and perfect corrosion resistance. However, in reality, CFRP composite materials cannot be used alone in some critical places such as positions of joints with hinges, locks. Therefore, metal reinforcements are usually necessary in local positions to prevent structure damage. Besides, if uncertainties present, obtained optimal structures may experience in failures as the optimization usually pushes solutions to the boundaries of constraints and has no room for tolerance and uncertainties, so robust optimization should be considered to accommodate the uncertainties in practice. This paper proposes a mixed topology method to optimize metal and carbon fiber reinforced plastic composite materials simultaneously under nondeterministic load with random magnitude and direction.
Journal Article

Programmed Load Spectrum for Fatigue Bench Test of a Vehicle Body

2016-04-05
2016-01-0387
A compiled method of the programmed load spectrum, which can simplify and accelerate the fatigue bench test of a car body, is proposed and its effectiveness is checked by the fatigue simulation. By using the multi-body dynamics model with a satisfactory accuracy, the virtual iteration is applied to cascade body loads from the wheel hubs. Based on the rain-flow counting method and statistics theory, the distributions of the body loads are analyzed, and then the programmed load spectrum is compiled and simplified. Through comparative study, the simulation results of random and programmed load spectrum are found to agree well with each other in terms of the damage distribution and fatigue life, which demonstrates the effectiveness of the presented method.
Technical Paper

Defrost Efficiency Analysis of PMMA Rear Window

2016-04-05
2016-01-0511
As a potential material for lightweight vehicle, polymethyl methacrylate (PMMA) has proven to perform well in optical behavior and weather resistance. However, the application in automotive glazing has seldom been studied. This paper investigates the defrost performance of PMMA rear window using both numerical and experimental methods. The finite element analysis (FEA) results were found to be in good agreement with the experimental data. Based on the validated finite element model, we further optimized the defrost efficiency by changing the arrangement of heating lines. The results demonstrated the frost layer on the vision-related region of PMMA rear window can melt within 30 minutes, which meets the requirement of defrost efficiency.
Technical Paper

Research on the Fatigue Durability Performance of a SUV Rear Axle

2016-04-05
2016-01-0376
The performance of the rear axle plays an important role in the performance of vehicle, and its fatigue durability is an integral part in the vehicle development. Taking a SUV model as the research subject, a new methodology of multi-channel spindle coupled road simulator and fatigue simulation analysis for rear axle assembly was introduced in the paper, aiming to address the fatigue design and its verification for the rear axle in the development phase. Firstly, road loads in the proving ground was collected by arranging proper sensors. Secondly, physical iteration was performed on the multichannel spindle coupled road simulator by taking six component forces at the wheel hub as the target signals. Then, after the time waveform replication of the loads the durability test was conducted. Finally, the validated simulation model was successfully implemented to improve the fatigue life of the axle.
Technical Paper

A Test Method and Simulation Study of PMMA Glazing on Motion Deviation

2014-04-01
2014-01-1001
For achieving vehicle light weighting, the motion deviation is calculated for substitution of PMMA glazing for inorganic glass. In this paper, a test method is proposed to measure and calculate the motion deviation of the dual-curvature glass. To simulate the dual-curvature glass, the torus surface is fitted with least square method according to the window frame data, which are measured by Coordinate Measuring Machine. By using this method, the motion deviation of PMMA glazing and inorganic glass can be calculated, which can not only validate the effectiveness of motion simulation, but also compare the performances. The results demonstrate that the performance of PMMA glazing is better than that of inorganic glass and the simulation results is validated.
X