Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Journal Article

An Experimentally Validated Model for Predicting Refrigerant and Lubricant Inventory in MAC Heat Exchangers

2014-04-01
2014-01-0694
The paper presents a semi-empirical model to predict refrigerant and lubricant inventory in both evaporator and condenser of an automotive air conditioning (MAC) system. In the model, heat exchanger is discretized into small volumes. Temperature, pressure and mass inventory are calculated by applying heat transfer, pressure drop and void fraction correlations to these volumes respectively. Refrigerant and lubricant are treated as a zeotropic mixture with a temperature glide. As refrigerant evaporates or condenses, thermophysical properties are evaluated accordingly with the change of lubricant concentration. Experimental data is used to validate the model. As a result, refrigerant and lubricant mass is predicted within 20% in the evaporator. However, in the condenser, lubricant mass was consistently under-predicted while refrigerant mass was predicted within 15% error. Moreover, the lubricant under-prediction becomes more significant at higher Oil Circulation Ratio (OCR).
Journal Article

Refrigerant and Lubricant Distribution in MAC System

2013-04-08
2013-01-1496
This paper presents experimental results for refrigerant and lubricant mass distribution in a typical automotive A/C (MAC) system. Experiments were conducted by closing valves located at the inlet and outlet of each component after reaching steady state, isolating the refrigerant and lubricant in each component. Refrigerant mass is recovered in a separate vessel using liquid nitrogen to reduce refrigerant vapor pressure to near vacuum. The overall weight is determined within ±1% after the separation of refrigerant and lubricant. The mass of lubricant is determined by using three different techniques: Remove and Weigh, Mix and Sample, and Flushing. The total mass of lubricant in the system is determined with ±2.5% uncertainty on average. R134a and R1234yf are used with PAG 46 oil as working fluid at different Oil Circulation Ratio (OCR), ranging from 2% to 4%. Experiments are conducted in two standard testing conditions: I35 and L35 (SAE Standard J2765).
X