Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Advanced Spray Impingement Modelling for an Improved Prediction Accuracy of the Ammonia Homogenisation in SCR Systems

2015-04-14
2015-01-1054
A fast preparation of the liquid urea water solution (UWS) is necessary to ensure high conversion rates in exhaust aftertreatment systems based on Selective Catalytic Reduction (SCR). Droplet wall interaction is of major importance during this process, in particular droplet breakup and the Leidenfrost effect. A deeper understanding of the underlying mechanisms is a basic requirement to calibrate CFD models in order to improve their prediction accuracy. This paper presents a detailed literature study and discussion about the major impact factors on droplet wall interaction. Measurements of the Leidenfrost temperature were conducted and the corresponding regimes classified based on optical observations. The pre- and post-impingement spray was analysed using the laser diffraction method. Further, the validity of spray initialisation based on measurements at room temperature was verified.
Technical Paper

Advanced SCR Flow Modeling with a Validated Large Eddy Simulation

2015-04-14
2015-01-1046
One promising application in the emission control is the Selective Catalytic Reduction (SCR) system for the reduction of nitric oxides from exhaust emissions. Previous works at the institute have highlighted the importance of accurate CFD turbulence modeling with respect to the turbulent mixing of ammonia vapor [1]. With the help of Laser Doppler Anemometry (LDA) measurements it was confirmed that RANS approaches are capable of predicting the velocity field adequately. In contrast, the turbulence level was underestimated for all RANS approaches [2]. Based on this work the paper at hand presents CFD results using Large Eddy Simulation (LES). The sensitivity of the solution with respect to spatial and temporal resolution as well as the boundary conditions is demonstrated. In accordance with the Kolmogorov theory grid sizes ranging from 3.2 to 20 million cells were investigated using LES methodology.
Technical Paper

Validation of Turbulence Models for an Automotive SCR System with Laser Doppler Anemometry Measurements

2013-04-08
2013-01-1579
In exhaust systems with selective catalytic reduction (SCR) a fast conversion of liquid urea to gaseous ammonia and a uniform distribution of the ammonia vapor upstream of the SCR catalyst are essential to reduce the nitric oxides efficiently. For the prediction of the mixing process and the transport of ammonia vapor with the CFD method an accurate description of the turbulent flow field is a basic requirement. This paper presents the comparison of simulation results using three different turbulence models (high-Re kε-RNG model, low-Re kω-SST model, Reynolds stress model) with measurements of the turbulent velocity field using Laser Doppler Anemometry (LDA). The investigations were carried out for a SCR system with a swirl mixer on a cold flow test bench for two different volume flows. From the measured velocity signals different components of the Reynolds-tensor were derived.
X