Refine Your Search

Search Results

Author:
Viewing 1 to 11 of 11
Technical Paper

Experimental Investigation of Combustion and Exhaust Emission Characteristics of a Variable Compression Ratio Engine Using Isopropyl Alcohol (2-Propanol)-Diethyl Ether Blend with Diesel.

2015-09-06
2015-24-2486
The continuous growth of population and development of industries give rise to massive increase in the global energy demand in recent years. Therefore present work investigated the combustion and emission characteristics of an unmodified four stroke single cylinder variable compression ratio diesel engine utilizing isopropyl alcohol (2-propanol)-diethyl ether blends with diesel. The different fuel samples were prepared using 10% isopropyl, alcohol 5% diethyl ether by volume (IPD15), 15% isopropyl alcohol, 5% diethyl ether by volume (IPD20) and 20% isopropyl alcohol 5% diethyl ether by volume (IPD25) with neat standard diesel. All experiment tests were performed with at variable compression ratio 17 and 18 at different load conditions. The effect of blends and compression ratio on combustion parameters viz. peak cylinder pressure and rate of heat release along with exhaust emissions CO, CO2, HC and NOx, were investigated.
Technical Paper

The Effect of Variable Compression Ratio on Performance and Emission Characteristics of Diesel Engine Fuelled With Blends of Diethyl Ether, Linseed Oil Biodiesel and Diesel

2015-09-01
2015-01-1936
The aim of present work is to investigate the performance and emission characteristics of a four stroke, single cylinder variable compression ratio engine fuelled with blends of diethyl ether, linseed oil methyl ester and neat diesel. In the experiment content of diethyl ether kept constant as 5% by volume for all fuel samples whereas linseed methyl ester biodiesel content was varied as 10%, 15% and 20% by volume. The different fuel samples DLD15, DLD20 and DLD25 with neat standard diesel. Experiment tests were performed with engine speed 1500 rpm and variable compression ratio 16, 17 and 18 at different load conditions. The effect of blends and compression ratio on different performance parameters viz. brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), and exhaust gas temperature along with emissions CO, CO2, HC and NOx, were investigated. Results showed that DLD20 and DLD25 exhibited the prominent engine performance and exhaust emissions compared to diesel fuel.
Technical Paper

Performance, Emission and Combustion, Analysis of Diesel Engine Fueled with Blends of Mahua Oil Methyl Ester and Diesel

2014-10-13
2014-01-2651
The rising cost and limited availability of crude oil in international market has provided an opportunity to look for substitute of fossil fuel. Scientists all over the world are experimenting on variety of renewable fuels for meeting the future energy demands. Bio origin fuels are fast becoming potential alternative resources to replace the fossil fuels. The vegetable oils, derived from oil seed crops have got 90 to 95% energy value of diesel on volume basis, comparable cetane number and can substitute upto 20% (v/v) of diesel fuel. Mahua seed oil is common ingredient of hydrogenated fat. Two-step transesterification process was employed to synthesize biodiesel from Mahua Oil (Madhuca-indica) and analysis of Physico-chemical properties as well as the combustion, performance and emission characteristics was done by taking 10, 20 and 100 % blend with diesel. The physico-chemical properties of the blends were found to be comparable to diesel.
Technical Paper

Assessment of the Performance and Emission Characteristics of 1-Octanol/Diesel Fuel Blends in a Water Cooled Compression Ignition Engine

2014-10-13
2014-01-2830
The interest of using alternative fuels in diesel engines has been accelerated exponentially due to a foreseen scarcity in world petroleum reserves, increase in the prices of the conventional fossil fuels and restrictions on exhaust emissions such as greenhouse gases from internal combustion (IC) engines initiated by environmental concerns. The constant trade-off between efficiency and emissions should be in proper balance with the conventional fuels in a fuel design process for future combustors. Unlike gasoline and diesel, alcohols act as oxygenated fuels. Adding alcohols to petroleum products allows the fuel to combust properly due to the presence of oxygen, which enhances premixed combustion phase, improves the diffusive combustion phase which increases the combustion efficiency and reduces air pollution. The higher activation energy of alcohols leads to better resistance to engine knocking that allows higher compression ratios and greater engine thermal efficiencies.
Technical Paper

Utilization of Blends of Jatropha Oil and N-Butanol in a Naturally Aspirated Compression Ignition Engine

2013-10-14
2013-01-2684
Diesel Engines are widely used in transportation, industrial and agriculture sectors worldwide due to their versatility and ruggedness. However, they also emit harmful emissions detrimental to human health and environment. Apart from environmental degradation, the perturbation in international crude oil prices is also mandating use of renewable fuels. In this context, vegetable oils such as Jatropha Curcas due to their carbon neutral nature and widespread availability, seems to present a promising alternative to the mineral diesel. Straight vegetable oils (SVO) are not recommended for direct diesel engine application due to their higher viscosity, poor volatility etc. and dilution of straight vegetable oil may effectively enable its direct application in unmodified diesel engines. In the present study, Jatropha oil was diluted with n-Butanol to improve the fuel properties of the blend.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Journal Article

Experimental Investigation of Diesel Engine Fueled with Jatropha Oil Blend with Ethanol

2013-09-08
2013-24-0105
Dwindling petroleum reserves and alarming level of air pollution has been an issue of great concern in recent times and researchers across the world are experimenting on variety of renewable fuels for meeting the future energy demands. Within the gamut of alternative fuels, biofuels are the most promising and have the potential to mitigate climate change and lease a new life to existing IC engines. The vegetable oils are having immense potential in this context and have been used either in neat or modified form by large number of researchers. Jatropha curcus is a perennial plant and bears non edible oil. The plant is drought tolerant and has been cultivated all over the arid and semi-arid areas for reforestation. In the present study, blends of jatropha oil and ethanol have been prepared in 5, 10, 15 and 20% (v/v) and evaluation of important properties of blends has been carried. The results show that properties are quite similar to diesel fuel.
Technical Paper

Experimental Investigation of Orange Peel Oil Methyl Ester on Single Cylinder Diesel Engine

2013-09-08
2013-24-0171
The rising cost and exponential depletion of crude oil in international market has provided an opportunity for the researchers to evaluate the utilization and suitability of various renewable fuels. Amongst variety of alternative fuels, biofuels have the potential to mitigate the vulnerability and the adverse effects of use of fossil fuels. Vegetable/plant oil is better proposition as alternative fuel for diesel engine having much advantage over other alternative fuels. Orange oil from its peel has a huge potential and can be used as an alternate fuel at the most economical purchase rate. In the present investigation experiments were carried out to evaluate performance and emission characteristics of Orange peel oil methyl ester blends (OPOME) (10%, and 20% by volume) on unmodified diesel engine. The properties of these blends were found to be comparable to diesel and confirming to both the American and European standards.
Technical Paper

Performance Evaluation and Emission Studies of a Single Cylinder Diesel Engine Fuelled with Isopropyl Alcohol and Diesel

2013-04-08
2013-01-1132
Phenomenal industrial activities worldwide in the last couple of centuries have resulted in indiscriminate use of conventional energy resources and environmental degradation. The consumption of petroleum-derived fuels has increased exponentially due to enhanced mobility and also caused serious threat to earth's eco-system. The need to explore variety of alternative fuels in transportation sector has been the subject of research all over the world. In this context, alcohols like butanol and isopropyl alcohol seem to present a viable option for potential application in diesel engines. In the present investigation, 5%, 10%, 15%, 20% (v/v) blends of isopropyl alcohol and diesel was prepared. The various blends were found to be homogenous and stable. The exhaustive engine trials were carried out on a single-cylinder unmodified diesel engine. The results suggest significant reduction in emission of oxides of nitrogen (NOx for various blends as compared to baseline data of diesel.
Technical Paper

An Experimental Investigation on Performance and Emission Studies of a Single Cylinder Diesel Engine Fuelled with Blends of Diesel and Mahua Oil Methyl Ester

2013-04-08
2013-01-1041
Ever increasing consumption of petroleum derived fuels has been a matter of grave concern due to rapidly depleting global reserves and alarming levels of emissions leading to global warming and climate change. Exhaustive research has been carried out globally to evaluate the suitability of variety of renewable fuels for internal combustion engine applications. Amongst them, vegetable oil methyl esters or biodiesel seem to be a promising alternative for diesel in vital sectors such as transportation, industrial and rural agriculture. For quite some time, the focus for production of biodiesel has shifted towards non-edible oil feedstock from the edible ones, mostly due to food security issues. One such non-edible oil, locally known as Mahua in Indian subcontinent, is a very promising feed stock for biodiesel production. In the present investigation, 5%, 10%, 15% and 20% (v/v %) blends of mahua oil methyl ester (MOME) and diesel were prepared.
X