Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

Multi-Layer Stratified (MuLS) Two-Stroke Engine

2012-10-23
2012-32-0119
The mandatory emission regulations coupled with market demands have resulted in the development of innovative engine technologies at lower costs for consumer applications. For example, the low cost two-stroke engines for hand-held applications have evolved from high specific output, high emission designs to lower emission engine architectures that meet today's EPA and CARB emission standards. Emissions and fuel consumption have reduced significantly, particularly in non-catalyzed engines. This paper highlights the design features of a Multi-Layered Stratified (MuLS) engine that has demonstrated the ability to meet the current emission standards without the catalyst. The Multi-Layer scavenging system consists of stratified layers of pure air, lean air-fuel mixture, and rich air-fuel mixture that are inducted separately and delivered in sequence into the combustion chamber through ports for minimizing the scavenging loss of the unburned fuel.
X