Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Combined Modeling of Thermal Systems of an Engine in the Purpose of a Reduction in the Fuel Consumption

2013-09-08
2013-24-0142
The tightening restrictions, in terms of fuel consumption, have pushed the vehicle manufacturers and equipment suppliers into searching for innovative ways to reduce the carbon dioxide emissions. Along with the ameliorations added to the engine itself, additional systems are grafted to the engine in order to keep up with the ever-changing laws. Isolating the impact on the fuel consumption of an added system, by on board testing, is a complicated task. In this case, using simulation modeling allows the reduction of delays related to prototyping and testing. This paper presents modeling of various thermal systems in a vehicle and their interactions to evaluate the fuel consumption using AMESim software. As means to reduce the CPU cost of the model (calculation time), without decreasing its predictability, engine modeling has been done by two steps: high frequency model and mean value model.
Technical Paper

Impact of the Underhood Opening Area on the Drag Coefficient and the Thermal Performance of a Vehicle

2013-04-08
2013-01-0869
The impact of the drag coefficient of a vehicle on its fuel consumption is very important. This paper will treat a proposition to reduce the drag coefficient via a reduction of the underhood opening area. The coastdown technique is adopted to find the drag coefficient. Three post-processing methods are then compared. Although, reducing the underhood opening ameliorates the drag coefficient, it influences as well the thermal performance of the cooling system, causing a possible overheating of the engine. For this reason, the impact of the underhood opening area on the cooling air speed is studied in detail as well. The purpose of these tests is to draw some variation laws that govern the response of a vehicle to a reduction in the underhood opening.
X