Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Light Weight Structure Development Using Non Linear Load Cases For Suspension Components (Cradle)

2016-04-05
2016-01-1391
Based on current trends, there is a huge demand for lightweight components, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (Misuse load case) based optimizations are relatively complex due to its highly nonlinear behavior. However, durability performances are critical in a front cradle design. So a process needs to be identified for creating a new light weight front cradle design. This study talks about the process of identifying new cast aluminium cradles achieving NVH and durability performance. Load path study using topology optimization is done based on compliance method for the durability load case. A concept model is generated from the topology results. This concept model is further optimized for thickness of ribs and walls by the application of various shape variables. All the critical non linear durability load cases are linked for the shape optimization study.
Technical Paper

Track Bar Bracket Development with the Help of Advanced Optimization Techniques

2016-04-05
2016-01-1387
The advanced Optimization techniques help us in exploring the light weight architecture. This paper explains the process of designing a lightweight track bar bracket, which satisfies all durability performance targets. The mounting locations and load paths are critical factors that define the performance and help in the development of weight efficient structure. The process is to identify the appropriate bolt location through Design of Experiment (DOE) and topology based studies; followed by section and shape optimization that help to distribute material in a weight efficient manner across the structure. Load path study using topology optimization is performed to identify the load path for durability load cases. Further shape optimization is done using hyper study to determine the exact thickness of the webs and ribs. A significant weight reduction from the baseline structure is observed. This process may be applicable for all casting components.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
X