Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Sustainable Mobility Using Fuels with Pathways to Low Emissions

2020-04-14
2020-01-0345
Regulations around the globe are driving the adoption of alternative fuels and vehicles through the implementation of stricter standards aimed at reducing carbon footprint and criteria emissions such as nitrogen oxides (NOx), particulate matter (PM), and total hydrocarbon (THC) emissions. Low emission zones have been implemented across Europe which restrict access by some vehicles with the aim of improving the air quality. The Paris Agreement on climate change declared governments’ intentions to reduce greenhouse gas (GHG) emissions as outlined in each country’s nationally determined contribution. Providing affordable energy to support prosperity while reducing environmental impacts, including the risks of climate change, is the dual challenge for the energy and transport industries.
Technical Paper

Application of Genetic Algorithm for the Calibration of the Kinetic Scheme of a Diesel Oxidation Catalyst Model

2018-09-10
2018-01-1762
In this work, a methodology for building and calibrating the kinetic scheme for the 1D CFD model of a zone-coated automotive Diesel Oxidation Catalyst (DOC) by means of a Genetic Algorithm (GA) approach is presented. The methodology consists of a preliminary experimental activity followed by a modelling, optimization and validation process. The tested aftertreatment component presents zone coating, with the front brick side covered with Zeolites in order to ensure hydrocarbons trapping at low temperature, and Platinum Group Metal (PGM), while the rear brick side presents an alumina washcoat with a different PGM loading. Reactor scale samples representative of each coating zone were tested on a Synthetic Gas Bench (SGB), to fully characterize the component’s behavior in terms of Light-off and hydrocarbons (HC) storage for a wide range of inlet feed compositions and temperatures, representative of engine-out conditions.
Technical Paper

Impact of Ester Structures on the Soot Characteristics and Soot Oxidative Reactivity of Biodiesel

2015-04-14
2015-01-1080
A study and analysis of the relation of biodiesel chemical structures to the resulting soot characteristics and soot oxidative reactivity is presented. Soot samples generated from combustion of various methyl esters, alkanes, biodiesel and diesel fuels in laminar co-flow diffusion flames are analyzed to evaluate the impact of fuel-bound oxygen in fatty acid esters on soot oxidation behavior. Thermogravimetric analysis (TGA) of soot samples collected from diffusion flames show that chemical variations in biodiesel ester compounds have an impact on soot oxidative reactivity and soot characteristics in contrast to findings reported previously in the literature. Soot derived from methyl esters with shorter alkyl chains, such as methyl butyrate and methyl hexanoate, exhibit higher reactivity than those with longer carbon chain lengths, such as methyl oleate, which are more representative of biodiesel fuels.
Journal Article

Design, Development and Validation of the 2013 Penn State University E85 Series Plug-In Hybrid Vehicle

2012-09-10
2012-01-1773
The Pennsylvania State University Advanced Vehicle Team (PSU AVT) is one of the fifteen (15) participating teams at the EcoCAR 2 “Plugging In to the Future” challenge. The team has worked in the design, development and validation of converting a 2013 Chevrolet Malibu, into an advanced technology hybrid vehicle. The PSU AVT has determined that a Plug-In Series Electric Hybrid architecture best meets the design goals of the EcoCAR 2 competition. The vehicle will utilize a front-wheel drivetrain powered by a Magna E-drive; an Auxiliary Power Unit (APU) based on a naturally aspirated Weber MPE 750 engine, converted for use with E85, coupled to a UQM PowerPhase 75 generator; an Energy Storage System (ESS) based on six A123, 15s3p battery modules; and a Mototron ECM-5554-112-0904 controller as the Master Vehicle Controller (MVC).
X