Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Safety Argument Considerations for Public Road Testing of Autonomous Vehicles

2019-04-02
2019-01-0123
Autonomous vehicle (AV) developers test extensively on public roads, potentially putting other road users at risk. A safety case for human supervision of road testing could improve safety transparency. A credible safety case should include: (1) the supervisor must be alert and able to respond to an autonomy failure in a timely manner, (2) the supervisor must adequately manage autonomy failures, and (3) the autonomy failure profile must be compatible with effective human supervision. Human supervisors and autonomous test vehicles form a combined human-autonomy system, with the total rate of observed failures including the product of the autonomy failure rate and the rate of unsuccessful failure mitigation by the supervisor. A difficulty is that human ability varies in a nonlinear way with autonomy failure rates, counter-intuitively making it more difficult for a supervisor to assure safety as autonomy maturity improves.
Technical Paper

Toward a Framework for Highly Automated Vehicle Safety Validation

2018-04-03
2018-01-1071
Validating the safety of Highly Automated Vehicles (HAVs) is a significant autonomy challenge. HAV safety validation strategies based solely on brute force on-road testing campaigns are unlikely to be viable. While simulations and exercising edge case scenarios can help reduce validation cost, those techniques alone are unlikely to provide a sufficient level of assurance for full-scale deployment without adopting a more nuanced view of validation data collection and safety analysis. Validation approaches can be improved by using higher fidelity testing to explicitly validate the assumptions and simplifications of lower fidelity testing rather than just obtaining sampled replication of lower fidelity results. Disentangling multiple testing goals can help by separating validation processes for requirements, environmental model sufficiency, autonomy correctness, autonomy robustness, and test scenario sufficiency.
Journal Article

Challenges in Autonomous Vehicle Testing and Validation

2016-04-05
2016-01-0128
Software testing is all too often simply a bug hunt rather than a well-considered exercise in ensuring quality. A more methodical approach than a simple cycle of system-level test-fail-patch-test will be required to deploy safe autonomous vehicles at scale. The ISO 26262 development V process sets up a framework that ties each type of testing to a corresponding design or requirement document, but presents challenges when adapted to deal with the sorts of novel testing problems that face autonomous vehicles. This paper identifies five major challenge areas in testing according to the V model for autonomous vehicles: driver out of the loop, complex requirements, non-deterministic algorithms, inductive learning algorithms, and fail-operational systems.
X