Refine Your Search

Search Results

Author:
Viewing 1 to 12 of 12
Technical Paper

Nonlinear Force Model of Electromagnetic Damper and Its Influence on Vibration Control

2021-04-06
2021-01-0319
In this paper, a nonlinear force model of an electromagnetic damper (EMD) is established and the model’s parameters are obtained by experiments. The effect of nonlinear force on vibration control of vehicle suspension system is analyzed by comparing the simulation data. Firstly, according to the mechanical and circuit structure of the EMD, a nonlinear model including electromagnetic force, friction force, and inertial force is established. Based on the EMD bench test, the mechanical parameters of the DC motor and the ball screw are obtained by the least square method. Then a quarter-car model including the electromagnetic suspension is established. By analyzing the transmission rate of the suspension response to the road excitation, the nonlinear force of the EMD shows an obvious influence on the high-frequency vibration performance of the suspension.
Technical Paper

Parameter Design of a Parallel Hydraulic Hybrid Vehicle Driving System Based on Regenerative Braking Control Strategy

2019-04-02
2019-01-0368
In this paper, hydraulic driving system parameters of a parallel hydraulic hybrid vehicle are designed based on the regenerative braking requirement. Torque, speed and power demands during typical driving cycles are analyzed. The braking control strategy is designed considering both the braking safety and braking energy recovery efficiency. The hydraulic braking torque is determined by the braking control strategy. The proportional relationship of hydraulic pump/ motor output torque and its working pressure is considered. Through simulation with typical city driving cycles, most braking energy can be recovered by the proposed hydraulic driving system and braking control strategy.
Technical Paper

Impact of Low and High Congestion Traffic Patterns on a Mild-HEV Performance

2017-10-08
2017-01-2458
Driven by stricter mandatory regulations on fuel economy improvement and emissions reduction, market penetration of electrified vehicles will increase in the next ten years. Within this growth, mild hybrid vehicles will become a leading sector. The high cost of hybrid electric vehicles (HEV) has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. Compared to a full hybrid, plug-in hybrid, or electric vehicle, a mild hybrid system stands out due to its maximum benefit/cost ratio. As part of our ongoing project to develop a mild hybrid system for developing markets, we have previously investigated improvements in drive performance and efficiency using optimal gearshift strategies, as well as the incorporation of high power density supercapacitors.
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

2017-03-28
2017-01-0430
This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Journal Article

The Safety and Dynamic Performance of Blended Brake System on a Two-Speed DCT Based Battery Electric Vehicle

2016-04-05
2016-01-0468
Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking.
Technical Paper

Tyre Load Analysis of Hydro-Pneumatic Interconnected Suspension with Zero Warp Suspension Stiffness

2015-04-14
2015-01-0630
The purpose of this paper is to present a concept of Hydro-Pneumatic Interconnected Suspension (HPIS) and investigate the unique property of the zero warp suspension stiffness. Due to the decoupling of warp mode from other modes, the road holding ability of the vehicle is maximized meanwhile the roll stability and ride comfort can be tuned independently and optimally without compromise. Ride comfort can be improved with reduced bounce stiffness and the progressive air spring rate can reduce the requirement of suspension deflection space. The roll stability can also be improved by increased roll stiffness. Vehicle suspension system modelling and modal analysis are carried out and compared with conventional suspension. The frequency response of tyres' dynamic load reveals that the proposed zero-warp-stiffness suspension enables the free articulation of front and rear axles at low frequency.
Technical Paper

Comparison of Powertrain System Configurations for Electric Passenger Vehicles

2015-03-10
2015-01-0052
Electric vehicles (EV) are considered a practical alternative to conventional and hybrid electric passenger vehicles, with higher overall powertrain efficiencies by omitting the internal combustion engine. As a consequence of lower energy density in the battery energy storage as compared to fossil fuels powered vehicles, EVs have limited driving range, leading to a range phobia and limited consumer acceptance. Particularly for larger luxury EVs, electric motors with a single reduction gear typically do not achieve the diverse range of function needs that are present in multi-speed conventional vehicles, most notably acceleration performance and top speed requirements. Subsequently, multi-speed EV powertrains have been suggested for these applications. Through the utilization of multiple gear ratios a more diverse range of functional needs can be realized without increasing the practical size of the electric motor.
Journal Article

Handling Analysis of a Vehicle Fitted with Roll-Plane Hydraulically Interconnected Suspension Using Motion-Mode Energy Method

2014-04-01
2014-01-0110
This paper employs the motion-mode energy method (MEM) to investigate the effects of a roll-plane hydraulically interconnected suspension (HIS) system on vehicle body-wheel motion-mode energy distribution. A roll-plane HIS system can directly provide stiffness and damping to vehicle roll motion-mode, in addition to spring and shock absorbers in each wheel station. A four degree-of-freedom (DOF) roll-plane half-car model is employed for this study, which contains four body-wheel motion-modes, including body bounce mode, body roll mode, wheel bounce mode and wheel roll mode. For a half-car model, its dynamic energy contained in the relative motions between its body and wheels is a sum of the energy of these four motion-modes. Numerical examples and full-car experiments are used to illustrate the concept of the effects of HIS on motion-mode energy distribution.
Journal Article

Characteristic Analysis of Roll and Pitch Independently Controlled Hydraulically Interconnected Suspension

2014-04-01
2014-01-0870
This paper presents the modeling and characteristic analysis of roll-plane and pitch-plane combined Hydraulically Interconnected Suspension (HIS) system. Vehicle dynamic analysis is carried out with four different configurations for comparison. They are: 1) vehicle with spring-damper only, 2) vehicle with roll-plane HIS, 3) vehicle with pitch-plane HIS and 4) vehicle with roll and pitch combined HIS. The modal analysis shows the unique modes-decoupling property of HIS system. The roll-plane HIS increases roll stiffness only without affecting other modes, and similarly pitch-plane HIS increases the pitch stiffness only with minimum influence on other modes. When roll and pitch plane HIS are integrated, the vehicle ride comfort and handling stability can be improved simultaneously without compromise. A detailed analysis and discussion of the results are provided to conclude the paper.
Technical Paper

An Electric Scooter with Super-Capacitor Drive and Regenerative Braking

2014-04-01
2014-01-1878
This paper presents a smart electric scooter system consisting of a microprocessor based vehicle controller (integrating an embedded regenerative braking controller), a 300W Permanent Magnet (PM) DC motor, two low-power DC-DC converters to form a higher power DC-DC converter pack, a motor controller, a supercapacitor bank and a capacitor cell balancing sub-system.
Technical Paper

Study of Power Losses in a Two-Speed Dual Clutch Transmission

2014-04-01
2014-01-1799
This paper mainly studies the power losses in a refined two-speed dual clutch transmission which is equipped in a electric vehicle test rig. Both numerical and experimental investigations are carried out. After theoretical analysis of the power losses original sources, the developed model is implemented into simulation code to predict the power losses. In order to validate the effectiveness of the proposed model, results from experimental test are used to compare the difference the simulation and test. The simulation and test result agree well with each other. Results show that the power losses in the two-speed are mainly generated by multi-plate wet clutch drag torque and gear churning loss.
Technical Paper

Two Motor Two Speed Power-Train System Research of Pure Electric Vehicle

2013-04-08
2013-01-1480
Method to improve the efficiency and the design of more efficient pure electric vehicle (PEV) system is a research hotspot for the automobile industry worldwide. Traditionally, PEV powertrains are dominated almost exclusively by single reducer structures in both concept and commercially available PEVs. This paper presents a novel two motor two speed pure electric power-train structure to study alternate methods for improving the operating efficiency of a typical PEV. This idea is derived from conventional power splitting transmissions to achieve motor efficiency optimization and ultimately lead to running range improvement. Through parameter matching and simulation, results demonstrated that the proposed two motor two speed PEV can realize better vehicle performance than single reducer PEV system; furthermore it can behave even better than a similar single motor two speed system.
X