Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

A HiL Test Bench for Monocular Vision Sensors and Its Applications in Camera-Only AEBs

2019-04-02
2019-01-0881
This paper presents a HiL test bench specifically designed for closed-loop testing of the monocular-vision based ADAS sensors, whereby the animated pictures of the virtual scene is calibrated and projected onto a 120-degree circular screen, such that the camera sensor installed has the same vision as the observation of the real-world scene. A high-fidelity AEBs model is established and deployed in the real-time target of the HiL system, making intervention decisions based on the instance-level detection information transmitted from the physical sensor. By referring to the 2018 edition of the C-NCAP testing protocol, the HiL tests of the rear-end collision scenarios is performed to investigate the performance and characteristics of the longitudinal-motion sensing of the sensor sample under test.
Technical Paper

Coordinated Engine Torque and Clutch Control During Gear-Shifting Process of Automated Manual Transmission

2018-04-03
2018-01-0866
This paper presents a novel powertrain control system specifically designed for longitudinal motion-control applications of an automated-manual-transmission vehicle, whereby the clutch and throttle modulation and gear change are highly coordinated such that the vehicle can precisely track the target acceleration or deceleration command even during an upshift or a downshift. An observer-free method for estimation of the engine’s operating point under various working condition is developed to compensate for limited sensing and enable effective feed-forward control of the engine torque and the clutch pressure. With minor modifications of the coordination strategies in the existing powertrain control system, the proposed control system can prevent stalling the engine from a standing start and achieve smoother shifting and faster dynamic response of the powertrain system, where non-smooth actuator nonlinearities are addressed explicitly, robustly, and efficiently.
Technical Paper

A Unified Creep-Speed Control Approach for Automated Parking System

2017-03-28
2017-01-0609
This paper presents a unified creep-speed controller specifically designed for the automated parking system of an automated manual transmission vehicle, whereby the engine management system, transmission control unit, and electronic stability control system can work cooperatively and harmoniously within the same control framework. First, a novel reference speed generator is designed and employs sinusoidal functions to produce the speed profile based on the maneuver-dependent distances computed by a path planner, such that the lag in vehicle response during start-up can be effectively reduced. Second, a well-tuned PID controller is adopted to determine the resultant longitudinal force in attempt to follow the reference speed and eliminate the distance error during the parking maneuvers.
Technical Paper

Driving and Steering Coordination Control for 4WID/4WIS Electric Vehicle

2015-09-29
2015-01-2762
This paper presents an integrated chassis controller with multiple hierarchical layers for 4WID/4WIS electric vehicle. The proposed systematic design consists of the following four parts: 1) a reference model is in the driver control layer, which maps the relationship between the driver's inputs and the desired vehicle motion. 2) a sliding mode controller is in the vehicle motion control layer, whose objective is to keep the vehicle following the desired motion commands generated in the driver control layer. 3) By considering the tire adhesive limits, a tire force allocator is in the control allocation layer, which optimally distributes the generalized forces/moments to the four wheels so as to minimize the tire workloads during normal driving. 4) an actuator controller is in the executive layer, which calculates the driving torques of the in-wheel motors and steering angles of the four wheels in order to finally achieve the distributed tire forces.
Journal Article

Combined Longitudinal and Lateral Control for Automated Lane Guidance of Full Drive-by-Wire Vehicles

2015-04-14
2015-01-0321
This paper presents a simultaneous longitudinal and lateral motion control strategy for a full drive-by-wire autonomous vehicle. A nonlinear model predictive control (NMPC) problem is formulated in which the nonlinear prediction model utilizes a spatial transformation to derive the dynamics of the vehicle about the reference trajectory, which facilitates the acquisition of the tracking errors at varying speeds. A reference speed profile generator is adopted by taking account of the road geometry information, such that the lateral stability is guaranteed and the lane guidance performance is improved. Finally, the nonlinear multi-variable optimization problem is simplified by considering only three motion control efforts, which are strictly confined within a convex set and are readily distributed to the four tires of a full drive-by-wire vehicle.
Technical Paper

Combined State Estimation and Active Fault Detection of Individual-Wheel-Drive Vehicles: An Adaptive Observer-Based Approach

2015-04-14
2015-01-1107
This paper presents an adaptive observer-based approach for the combined state estimation and active fault detection and isolation (FDI) of the individual-wheel-drive (IWD) vehicles. A 3-DOF vehicle model coupled with the Highway Safety Research Institute (HSRI) tire model is established and used as the observation model. Based on this model, the dual unscented Kalman filter (DUKF) technique is employed for the observer design to give fusion results of the interdependent state and parameter variables, which undergo nonlinear transformations, with the minimum square errors. Effectiveness of the proposed algorithm is examined and validated through co-simulation between MATLAB/Simulink and CarSim. The results demonstrate that the DUKF-based observer effectively filters the sensor signals, accurately obtains the longitudinal and lateral velocities, explicitly isolates the faulty wheel(s) and accurately estimates the actual torque(s) even with the presence of noise.
Technical Paper

Study on Dynamic Characteristics and Control Methods for Drive-by-Wire Electric Vehicle

2014-09-30
2014-01-2291
A full drive-by-wire electric vehicle, named Urban Future Electric Vehicle (UFEV) is developed, where the four wheels' traction and braking torques, four wheels' steering angles, and four active suspensions (in the future) are controlled independently. It is an ideal platform to realize the optimal vehicle dynamics, the marginal-stability and the energy-efficient control, it is also a platform for studying the advanced chassis control methods and their applications. A centralized control system of hierarchical structure for UFEV is proposed, which consist of Sensor Layer, Identification and Estimation Layer, Objective Control Layer, Forces and Motion Distribution Layer, Executive Layer. In the Identification and Estimation Layer, identification model is established by utilizing neural network algorithms to identify the driver characteristics. Vehicle state estimation and road identification of UFEV based on EKF and Fuzzy Logic Control methods is also conducted in this layer.
X