Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Journal Article

Hybrid Technique for Real-Time Simulation of High-Frequency-Switched Electrical Systems

2016-09-20
2016-01-2028
Experimental Hardware-in-the-loop (xHIL) testing utilizing signal and/or power emulation imposes a hard real-time requirement on models of emulated subsystems, directly limiting their fidelity to what can be achieved in real-time on the available computational resources. Most real-time simulators are CPU-based, for which the overhead of an instruction-set architecture imposes a lower limit on the simulation step size, resulting in limited model bandwidth. For power-electronic systems with high-frequency switching, this limit often necessitates using average-value models, significantly reducing fidelity, in order to meet the real-time requirement. An alternative approach emerging recently is to use FPGAs as the computational platform, which, although offering orders-of-magnitudes faster execution due to their parallel architecture, they are more difficult to program and their limited fabric space bounds the size of models that can be simulated.
Journal Article

Utilizing Behavioral Models in Experimental Hardware-in-the-Loop

2016-09-20
2016-01-2042
This paper introduces a method for conducting experimental hardware-in-the-loop (xHIL), in which behavioral-level models are coupled with an advanced power emulator (APE) to emulate an electrical load on a power generation system. The emulator is commanded by behavioral-level models running on an advanced real-time simulator that has the capability to leverage Central Processing Units (CPUs) and field programmable gate arrays (FPGA) to meet strict real-time execution requirements. The paper will be broken down into four topics: 1) the development of a solution to target behavioral-level models to an advanced, real-time simulation device, 2) the development of a high-bandwidth, high-power emulation capability, 3) the integration of the real-time simulation device and the APE, and 4) the application of the emulation system (simulator and emulator) in an xHIL experiment.
Technical Paper

Air Cycle Machine for Transient Model Validation

2016-09-20
2016-01-2000
As technology for both military and civilian aviation systems mature into a new era, techniques to test and evaluate these systems have become of great interest. To achieve a general understanding as well as save time and cost, the use of computer modeling and simulation for component, subsystem or integrated system testing has become a central part of technology development programs. However, the evolving complexity of the systems being modeled leads to a tremendous increase in the complexity of the developed models. To gain confidence in these models there is a need to evaluate the risk in using those models for decision making. Statistical model validation techniques are used to assess the risk of using a given model in decision making exercises. In this paper, we formulate a transient model validation challenge problem for an air cycle machine (ACM) and present a hardware test bench used to generate experimental data relevant to the model.
Journal Article

Validation of a DC-DC Boost Circuit Control Algorithm

2016-09-20
2016-01-2030
Cost and performance requirements are driving military and commercial systems to become highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits of those complex controls and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop plant models and determine the uncertainty of those models to predict performance and stability of the control algorithms. A process of model and control algorithm validation for a dc-dc boost converter circuit based on acceptance sampling is presented here. The validation process described in this paper is based on MIL-STD 3022 with emphasis on requirements settings and the testing process. The key contribution of this paper is the process for model and control algorithm validation, specifically a method for decomposing the problem into model and control algorithm validation stages.
Journal Article

Transient Engine Emulation within a Laboratory Testbed for Aircraft Power Systems

2014-09-16
2014-01-2170
This paper presents the details of an engine emulation system utilized within a Hardware-in-the-Loop (HIL) test environment for aircraft power systems. The paper focuses on the software and hardware interfaces that enable the coupling of the engine model and the generator hardware. In particular, the rotor dynamics model that provides the critical link between the modeled dynamics of the engine and the measured dynamics of the generator is described in detail. Careful consideration for the measured torque is included since the measurement contains inertial effects as well as torsional resonances. In addition, the rotor model is equipped with the ability to apply power and speed scaling between the engine and generator.
Technical Paper

Data Acquisition Uncertainty

2012-10-22
2012-01-2206
With the advent of modern parallel computing systems, larger and more accurate simulation models have been developed to simulate real-world hardware. These models require verification and validation (V&V), the latter using data acquired from representative hardware to ascertain the uncertainty of the model. An understanding of the errors introduced by the measurement system into the validation assessment allows for the model assessor to attribute errors to the measurement system as opposed to the model or experimental setup. Once the model(s) have been through the validation process, decision makers can better understand the risk associated with using these models. This paper describes one possible procedure to quantify the uncertainty of the data acquisition (DAQ) system.
X