Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Machine-Learning Approach to Behavioral Identification of Hybrid Propulsion System and Component

2022-03-29
2022-01-0229
Accurate determination of driveshaft torque is desired for robust control, calibration, and diagnosis of propulsion system behaviors. The real-time knowledge of driveshaft torque is also valuable for vehicle motion controls. However, online identification of driveshaft torque is difficult during transient drive conditions because of its coupling with vehicle mass, road grade, and drive resistance as well as the presence of numerous noise factors. A physical torque sensor such as a strain-gauge or magneto-elastic type is considered impractical for volume production vehicles because of packaging requirements, unit cost, and manufacturing investment. This paper describes a novel online method, referred to as Virtual Torque Sensor (VTS), for estimating driveshaft torque based on Machine-Learning (ML) approach. VTS maps a signal from Inertial Measurement Unit (IMU) and vehicle speed to driveshaft torque.
Journal Article

Torque Converter Launch and Lock with Multi-Input Multi-Output Control

2021-04-06
2021-01-0422
A torque converter is a type of fluid coupling device used to transfer engine power to the gearbox and driveline. A bypass clutch equipped in a torque converter assembly is a friction element which when fully engaged, can directly connect the engine to the gearbox. The torque converter is an important launch device in an automatic transmission which decouples engine speed from gearbox input speed while providing torque multiplication to drive the vehicle. During partial pedal launch, it is desired to engage the bypass clutch early and reduce the converter slippage in order to reduce power loss and achieve better fuel economy. However, engaging the bypass clutch early and aggressively may disturb the wheel torque and cause unpleasant driving experiences. This paper describes a multi-input multi-output (MIMO) control method to coordinate both engine and converter bypass clutch to simultaneously deliver desired wheel torque and reduce converter slippage.
Technical Paper

CVT Ratio Scheduling Optimization with Consideration of Engine and Transmission Efficiency

2019-04-02
2019-01-0773
This paper proposes a transmission ratio scheduling and control methodology for a vehicle with a Continuous Variable Transmission (CVT) and a downsized gasoline engine. The methodology is designed to deliver the optimal vehicle fuel economy within drivability and performance constraints. Traditionally, the Optimum Operating Line (OOL) generated from an engine brake specific fuel consumption map is considered to be the best option for ratio scheduling, as it defines the points at which engine efficiency is maximized. But the OOL does not consider transmission efficiency, which may be a source of significant losses. To develop a CVT ratio schedule that offers the best fuel economy for the complete powertrain, an empirical approach was used to minimize fuel consumption by considering engine efficiency, CVT efficiency, and requested vehicle power. A backward-looking model was used to simulate a standard driving cycle (FTP-75) and develop a new powertrain-optimal operating line (P-OOL).
Technical Paper

Control of Gear Ratio and Slip in Continuously Variable Transmissions: A Model Predictive Control Approach

2017-03-28
2017-01-1104
The efficiency of power transmission through a Van Doorne type Continuously Variable Transmission (CVT) can be improved by allowing a small amount of relative slip between the engine and driveline side pulleys. However, excessive slip must be avoided to prevent transmission wear and damage. To enable fuel economy improvements without compromising drivability, a CVT control system must ensure accurate tracking of the gear ratio set-point while satisfying pointwise-in-time constraints on the slip, enforcing limits on the pulley forces, and counteracting driveline side and engine side disturbances. In this paper, the CVT control problem is approached from the perspective of Model Predictive Control (MPC). To develop an MPC controller, a low order nonlinear model of the CVT is established. This model is linearized at a selected operating point, and the resulting linear model is extended with extra states to ensure zero steady-state error when tracking constant set-points.
X