Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Energy Analysis of Electromechanical Actuator under Simulated Aircraft Primary Flight Control Surface Load

2014-09-16
2014-01-2182
The purpose of this study is to set up a laboratory test apparatus to analyze aircraft flight control EMAS' electrical and thermal energy flow under transient and dynamic flight profiles. A hydraulic load frame was used to exert load to the EMA. The actuator was placed within an environmental chamber which simulates ambient temperature as function of altitude. The simulated movement or stroke was carried out by the EMA. The under test EMA's dynamic load, stroke, and ambient temperature were synchronized through a real time Labview DAQ system. Motor drive voltage, current, regenerative current, and motor drive and motor winding temperature were recorded for energy analysis. The EMA under test was subjected to both transient and holding load laid out in a test matrix.
Technical Paper

Test Set-up for Electromechanical Actuation Systems for Aircraft Flight Control

2012-10-22
2012-01-2203
An Electromechanical Actuation System (EMAS) are an important component for an all electric Aircraft. EMAS would be lighter and require less system maintenance and operational costs than hydraulic actuators, typically used in aircraft systems. Also, hydraulic actuation systems require a constant power load to maintain hydraulic pressure, whereas EMAS only use power when actuation is needed. The technical challenges facing EMAS for aircraft primary flight control includes jam tolerance, thermal management, wide temperature range, high peak electric power draw, regenerative power, installation volume limit for thin wings, etc. This paper focuses on a laboratory test setup to simulate EMAS flight control environment to test and evaluate three important performance parameters of EMAS; thermal management, transient peak power draw, and regenerative power.
X