Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Servomotor Controlled Standard Automated Manual Transmission for Rapid Smooth Shifts

2013-10-14
2013-01-2605
Present day AMT unit uses two high pressure hydraulically operated pistons for select & shift operations which make the unit weigh around 8kg. Besides this it also makes the unit more complex & unreliable with a lot of torque interruption. The use of electrical servo motors steps in here as a better alternative as it provides a more precise and smoother shift. To test this we used a 5-MT Transmission. For the selection, a precise 14.5 degree of twisting was required which was easily achieved by the servo motor. Further, shift of 10.5mm could be made possible by using the motor to shift the rack using a pinion on the shaft. This system then essentially eliminates the whole hydraulic circuit, the housing of actuator pack & power pack making it a simpler unit all together. Thus, it offers an uninterrupted torque path from the engine to vehicle which allows for a seamless gearshift. This seminal paper provides an introduction to the technology together.
Journal Article

Shifter Fork Stiffness Correlation to Gear Shift Quality

2013-09-24
2013-01-2447
Shift quality of a manual transmission is a critical characteristic that requires utmost care while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shifter design, gear design, transmission oil selection etc. This paper presents a correlation between stiffness of the shift fork in manual transmission with the gear shift quality using a gear shift quality assessment setup. Stiffness of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A-5-speed manual transmission is used as an example to illustrate the same. A direct correlation of gear shift fork stiffness with the shift force experienced by the driver is established. The shift system was modeled in the UG NX 6.0 software to collate the synchronization force, shift system gap etc with the constraint on the shift fork.
Technical Paper

Optimization through NVH Analysis to Improve the Vehicle Acoustics and Quality of Transmission Shifter

2013-09-24
2013-01-2445
Gear shift quality and feel determines the performance of the transmission. It is dependent on the synchronizer, shift system, gear shifter etc in a transmission. In this study the impact of the transmission shifter on the gear shift feel is detailed. More focus is paid towards the feel in terms of NVH characteristics. The rear wheel drive transmission shifter can be bifurcated into direct and indirect shift type. Indirect shifter are of two types, the rod type shifter and the cable shifter. The rod type shifter is analyzed in detail. All the shifters are connected to the gear shift top lever which is the customer interface for gear shifting. The design of the top lever is critical in getting the optimal feel of shifting and the mounting of the shifter is critical to improve its NVH characteristics. Different design iteration of the top lever are studied to illustrate the impact of the weight and stiffness on the vibration.
X