Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Effects of Bore-to-Stroke Ratio on the Efficiency and Knock Characteristics in a Single-Cylinder GDI Engine

2019-04-02
2019-01-1138
As a result of stringent global regulations on fuel economy and CO2 emissions, the development of high-efficiency SI engines is more urgent now than ever before. Along with advanced techniques in friction reduction, many researchers endeavor to decrease the B/S (bore-to-stroke) ratio from 1.0 (square) to a certain value, which is expected to reduce the heat loss and enhance the burning rate of SI engines. In this study, the effects of B/S ratios were investigated in aspects of efficiency and knock characteristics using a single-cylinder LIVC (late intake valve closing) GDI (gasoline direct injection) engine. Three B/S ratios (0.68, 0.83 and 1.00) were tested under the same mechanical compression ratio of 12:1 and the same displacement volume of 0.5 L. The head tumble ratio was maintained at the same level to solely investigate the effects of geometrical changes caused by variations in the B/S ratio.
Technical Paper

Combined Effects of Spark Discharge Pattern and Tumble Level on Cycle-to-Cycle Variations of Combustion at Lean Limits of SI Engine Operation

2017-03-28
2017-01-0677
Improving the thermal efficiency of spark ignition (SI) engine is strongly required due to its widespread use but considerably less efficiency than that of compression ignition (CI) engine. Although lean SI engine operation can offer substantial improvements of the thermal efficiency relative to that of traditional stoichiometric SI operation, the cycle-to-cycle variations of combustion increases with the level of air dilution, and becomes unacceptable. To improve the stability of lean operation, this study examines the effects of spark discharge pattern and tumble level on cycle-to-cycle variations of combustion at lean limits. The spark discharge pattern was altered by a custom inductive ignition system using ten spark coils and the tumble level was increased by a custom adapter installed in the intake port (tumble adapter).
Technical Paper

An Investigation into Cycle-to-Cycle Variations of IMEP using External EGR and Rebreathed EGR in an HCCI Engine, Based on Experimental and Single-Zone Modeling

2015-09-01
2015-01-1805
The characteristics of cycle-to-cycle variations of indicated mean effective pressure (IMEP) with combustion-phasing retard have been investigated experimentally and computationally in an homogeneous charge compression ignition (HCCI) engine using dimethyl ether (DME). The experiments were conducted in a single-cylinder HCCI research engine equipped with an exhaust gas recirculation (EGR) passage for external EGR and a two-stage exhaust cam for rebreathed EGR. To understand the chemical effects of rebreathed EGR, which is assumed to contribute to the autoignition enhancement, the computations were performed with a single-zone model of CHEMKIN using a chemical-kinetic mechanism developed by combining DME mechanism and NOx submechanism.
Journal Article

A Computational Study of the Combined Effects of EGR and Boost Pressure on HCCI Autoignition

2012-10-23
2012-32-0076
This study computationally investigates the combined effects of EGR and boost pressure on HCCI autoignition using iso-octane, PRF50 and n-heptane. The computations were conducted using the single-zone model of CHEMKIN included in CHEMKIN-PRO with detailed chemical-kinetics mechanisms for iso-octane, PRF and n-heptane from Lawrence Livermore National Laboratory (LLNL). To better reproduce the state of EGR addition in real engine, the EGR composition is determined after several combustion cycles under the constant amount of fuel. All data points were acquired with a CA50 of 5°CA aTDC by adjusting initial temperature to remove the effect of combustion phasing, which can influence on HCCI autoignition from any effect of the EGR and boost pressure themselves. The results show that EGR increases the burn duration and reduces the maximum pressure-rise rate with lower peak of maximum heat-release rates for all fuels even for a boost pressure, which accelerates a HCCI autoignition propensity.
X