Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Reduction of Heavy-Duty Diesel Exhaust Particle Number and Mass at Low Exhaust Temperature Driving by the DOC and the SCR

2012-09-10
2012-01-1664
The effect of SCR on nanoparticle emissions has been a subject for some recent diesel particle emission related studies. In this study, the effect of after-treatment (DOC and SCR) on particle emissions was studied with a heavy-duty off-road diesel engine (emission level stage 3b with an SCR). A special “transient cold test cycle” (TCTC) was designed to describe the SCR system operation at low exhaust gas temperatures. The particle instrumentation made it possible to measure on-line the particle number concentration, particle size distribution and chemical composition of particles. The largest particle number concentrations were measured after the exhaust manifold. The exhaust after-treatment was observed to reduce the total particle number concentration by 82.5% with the DOC and 95.7% with the DOC+SCR.
Technical Paper

The Effect of a Particle Oxidation Catalyst (POC®) on Particle Emissions of a GDI Car during Transient Engine Operation

2013-04-08
2013-01-0839
Particle emissions have been generally associated to diesel engines. However, spark-ignition direct injection (SI-DI) engines have been observed to produce notable amounts of particulate matter as well. The upcoming Euro 6 legislation for passenger cars (effective in 2014, stricter limit in 2017) will further limit the particulate emissions from SI engines by introducing a particle number emission (PN) limit, and it is not probable that the SI-DI engines are able to meet this limit without resorting to additional aftertreatment systems. In this study, the solid particle emissions of a SI-DI passenger car with and without an installed Particle Oxidation Catalyst (POC®) were studied over the New European Driving Cycle (NEDC) on a chassis dynamometer and over real transient acceleration situations on road. It was observed that a considerable portion of particle number emissions occurred during the transient acceleration phases of the cycle.
X