Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

The Effect of Near-Zero Aromatic Fuels on Internal Diesel Injector Deposit Test Methods

2017-03-28
2017-01-0807
Internal diesel injector deposits (IDID) are now a well understood phenomenon and a standard test procedure has been developed and partially approved by the Coordinating European Council (CEC). The engine test procedure has been approved for simulation of sodium soap deposits by dosing the test fuel with a sodium salt and dodecenyl succinic acid (DDSA), whilst amide lacquer deposits simulation by dosing the test fuel with a low molecular weight (MWt) polyisobutylene succinimide (PIBSI) is still under development. The solubility of these contaminants in the base fuel should be reasonably constant to achieve consistent results. With the introduction of diesel from varying sources, this study focused on the effect of near-zero aromatics EN 15940 compliant gas-to-liquids GTL diesel, very similar to hydrotreated vegetable oil (HVO), on IDID severity across two different engine platforms, and the response of a modern deposit control additive.
Technical Paper

Investigations into Fuel Additive Induced Power Gain in the CEC F-98-08 DW10B Injector Fouling Engine Test

2014-10-13
2014-01-2721
Diesel powered vehicles have grown in popularity over the last 15 years due to the introduction of advanced, high pressure, direct injection fuel systems that enable improved emissions, power and a more desirable driving experience. However, such vehicles only perform optimally when the fuel system is in a clean condition. When deposits form inside the injector nozzle holes, a measurable deterioration in power is observed. The CEC F-98-08 Peugeot DW10 engine test was introduced in 2008 in order to evaluate the nozzle fouling propensity of fuels and the beneficial effect of deposit control additives. Papers have been published demonstrating such effects, in particular the propensity of zinc and biodiesel contaminants to cause injector fouling and the performance of additives in both deposit control (keep clean) and removal (clean-up) modes.
X